

Affiliated to

DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY, LUCKNOW

Evaluation Scheme

For

Bachelor of Technology Computer Science

Second Year

(Effective from the Session: 2024-25)

Bachelor of Technology

Computer Science

Evaluation Scheme SEMESTER-III

Sl.	о 0		Types of Subjects	P	erioo	ls	Ev	aluatio	n Schemes		End	Total	Credit
No.	Codes		Subjects	L	Т	Р	СТ	ТА	TOTAL PS		nester PE		
		3 WEEKS CON	IPULSORY IN	DUC	TIO	N PI	ROGR	AM		1	-1		
1	BAS0301A	Engineering Mathematics III	Mandatory	3	1	0	30	20	50	100		150	4
2	BCSE0306	Discrete Structures	Mandatory	3	1	0	30	20	50	100		150	4
3	BCS0301	Foundation of Cloud Computing	Mandatory	3	0	0	30	20	50	100		150	3
4	BCSE0301	Data Structure and Algorithm -1	Mandatory	3	0	0	30	20	50	100		150	3
5	BCSAI0302	Logic Design and Computer Architecture	Mandatory	3	0	0	30	20	50	100		150	3
6	BCSE0352	Object Oriented Techniques using Java	Mandatory	0	0	6			5)	100	150	3
7	BCSE0351	Data Structure and Algorithm- I Lab	Mandatory	0	0	4			5)	50	100	2
8	BCS0351	Foundation of Cloud Computing Lab	Mandatory	0	0	2			2	5	25	50	1
9	BCSE0359	Internship Assessment -I	Mandatory	0	0	2			5)		50	1
10	BNC0301/ BNC0302	Artificial Intelligence and Cyber Ethics / Environmental Science	Compulsory Audit	2	0	0	30	20	50	50		100	NA
		*Massive Open Online Courses (For B.Tech. Hons. Degree)	*MOOCs										
		TOTAL										1100	24

* List of MOOCs Based Recommended Courses for Second year (Semester-III) B. Tech Students

S. No.	Subject Code	Course Name	University / Industry Partner Name	No of Hours	Credits
1	BMC0012	Data Structures and Algorithms using Python - Part 1	Infosys Wingspan (Infosys Springboard)	29h 27m	2
2	BMC0008	Object Oriented Programming Using Python	Infosys Wingspan (Infosys Springboard)	46h 13m	3.5

PLEASE NOTE: -

- A 3-4 weeks Internship shall be conducted during summer break after semester-II and will be assessed during semester-III
- Compulsory Audit (CA) Courses (Non-Credit BNC0301/BNC0302)
 - > All Compulsory Audit Courses (a qualifying exam) do not require any credit.
 - \blacktriangleright The total and obtained marks are not added in the grand total.

Abbreviation Used:

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., CE: Core Elective, OE: Open Elective, DE: Departmental Elective, PE: Practical End Semester Exam, CA: Compulsory Audit, MOOCs: Massive Open Online Courses.

Bachelor of Technology

Computer Science

Evaluation Scheme

SEMESTER-IV

Sl. Subject No. Codes		Subject	Types of Subjects			Evaluation Schemes			End Semester		Total	Credit		
INO.	Codes	, i i i i i i i i i i i i i i i i i i i	Subjects	L	Т	Р	СТ	TA	TOTAL	PS	ТЕ	PE		
1	BAS0402	Engineering Mathematics IV	Mandatory	3	1	0	30	20	50		100		150	4
2	BASL0401	Technical Communication	Mandatory	2	1	0	30	20	50		50		100	3
3	BCSE0401	Data Structure and Algorithm-II	Mandatory	3	0	0	30	20	50		100		150	3
4	BCSE0404	Theory of Automata and Formal Languages	Mandatory	3	0	0	30	20	50		100		150	3
5	BCSE0403	Operating Systems	Mandatory	2	0	0	30	20	50		50		100	2
6	BCSE0451	Data Structure and Algorithm-II Lab	Mandatory	0	0	4				50		50	100	2
7	BCSE0453	Operating Systems Lab	Mandatory	0	0	4				50		50	100	2
8	BCSE0452	Database Management Systems	Mandatory	0	0	6				50		100	150	3
9	BASL0451	Technical Communication Lab	Mandatory	0	0	2				25		25	50	1
10	BCSE0459	Mini Project using Open Technology	Mandatory	0	0	2				50			50	1
11	BNC0401/ BNC0402	Artificial Intelligence and Cyber Ethics / Environmental Science	Compulsor y Audit	2	0	0	30	20	50		50		100	NA
		*Massive Open Online Courses (For B.Tech. Hons. Degree)	*MOOCs											
		TOTAL											1100	24

* List of MOOCs Based Recommended Courses for Second ye	ear (Semester-III) B. Tech Students
---	-------------------------------------

S.No.	Subject Code	Course Name	University / Industry Partner Name	No of Hours	Credits
1	BMC0013	Programming Fundamentals Using Python- Part2	Infosys Wingspan (Infosys Springboard)	40h 13m	3
2	BMC0014	Programming Using Java	Infosys Wingspan (Infosys Springboard)	113hrs 2m	4

PLEASE NOTE: -

- A 3-4 weeks Internship shall be conducted during summer break after semester-IV and will be assessed during Semester-V
- Compulsory Audit (CA) Courses (Non-Credit BNC0401/BNC0402)
 - All Compulsory Audit Courses (a qualifying exam) do not require any credit.
 - > The Total and obtained marks are not added in the Grand Total.

Abbreviation Used:

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., CE: Core Elective, OE:Open Elective, DE: Departmental Elective, PE: Practical End Semester Exam, CA: Compulsory Audit, MOOCs: Massive Open Online Courses.

A student will be eligible to get Under Graduate degree with Honours only, if he/she completes the additional MOOCs courses such as Coursera certifications, or any other online courses recommended by the Institute (Equivalent to 20 credits). During Complete B.Tech. Program Guidelines for credit calculations are as follows.

1. For 6 to 12 Hours =0.5 Credit

2. For 13 to18 =1 Credit

3. For 19 to 24 =1.5 Credit

4. For 25 to 30 = 2 Credit

5. For 31 to 35 =2.5 Credit

6. For 36 to 41 =3 Credit

7. For 42 to 47 = 3.5 Credit

8. For 48 and above =4 Credit

For registration to MOOCs Courses, the students shall follow Coursera registration details as per the assigned login and password by the Institute these courses may be cleared during the B. Tech degree program (as per the list provided). After successful completion of these MOOCs courses, the students shall provide their successful completion status/certificates to the Controller of Examination (COE) of the Institute through their coordinators/Mentors only.

The students shall be awarded Honours Degree as per following criterion.

i. If he / she secures 7.50 as above CGPA.

ii. Passed each subject of that degree program in the single attempt without any grace.

iii. Successful completion of MOOCs based 20 credits

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY GREATER NOIDA-201306 (An Autonomous Institute)

School of Computer Science in Emerging Technology

Subject Name: Engineering Mathematics-III

L-T-P [3-1-0]

Subject Code: BAS0301A

Applicable in Department: CSE/CS/IT/CSE-R/ M.Tech.(Int.)(CSE)

Pre-requisites of the Subject: Knowledge of Mathematics I and II of B. Tech or equivalent.

Course Objective-The objective of this course is to familiarize the engineers with concept of function of complex variables, Partial differential equations & their applications, Numerical techniques for various mathematical tasks and numerical aptitude. It aims to show case the students with standard concepts and tools from B. Tech to deal with advanced level of mathematics and applications that would be essential for their disciplines.

Course Outcomes (CO)

Course outcome: After completion of this course students will be able to:					
		Knowledge Level(KL)			
CO 1	Apply the concept of partial differential equation to solve partial differential eequations and problems concerned with partial differential equations.	К3			
CO2	Apply the concept of numerical techniques to evaluate the zeroes of the Equation, concept of interpolation and numerical methods for various mathematical operations and tasks, such as integration, the solution of linear system of equations.	К3			
CO3	Apply the working methods of complex functions for finding analytic functions.	К3			
CO4	Apply the concepts of complex functions for finding Taylor's series, Laurent's series and evaluation of definite integrals.	К3			
CO5	Solve the problems of Number System, Permutation & Combination, Probability, Set theory, Function, Data Interpretation, Syllogism.	К3			
	Syllabus				

Unit No	Module Name	Topic covered	Pedagogy	Lecture Required (L+P)	Practical/ Assignment/ Lab Nos	CO Mapping
1	Partial Differential Equation and its Applications	Introduction of partial differential equations, Second order linear partial differential equations with constant coefficients. Classification of second order partial differential equations, Method of separation of variables for solving partial differential equations, Solution of one dimension wave and heat equation.	Class room	8 L	Assignment 1.1	CO1
2	Numerical Techniques	Error analysis, Zeroes of transcendental and polynomial equations using Bisection method, Regula-Falsi method and Newton-Raphson method, Interpolation: Lagrange's and Newton's divided difference formula. Solution of system of linear equations, Gauss Elimination method, Gauss- Seidel method. Numerical integration, Trapezoidal rule, Simpson's one third and three-eight rules.	Class room	8 L	Assignment-2.1	CO2
3	Variable – Differentiatio	Limit, Continuity and differentiability, Functions of complex variable, Analytic functions, Cauchy- Riemann equations (Cartesian and Polar form), Harmonic function, Method to find Analytic functions, Mobius transformation and their properties.	Class room Teaching.	8 L	Assignment-3.1	CO3
4		Complex integrals, Contour integrals, Cauchy- Goursat theorem (Statement), Cauchy integral formula (Statement), Taylor's series, Laurent's series, Liouvilles's theorem (Statement), Singularities, Classification of Singularities, zeros of analytic functions, Residues, Methods of finding residues, Cauchy Residue theorem, Evaluation of real integrals of the type $\int_{0}^{2\pi} f(\sin\theta, \cos\theta) d\theta$ and $\int_{-\infty}^{\infty} f(x) dx$	RUJLU DU	8 L	Assignment-4.1	CO4
5	Aptitude-III	Number System, Permutation & Combination, Probability, Set theory, Function, Non Verbal Reasoning Data Interpretation, Syllogism.		8 L	Assignment-5.1	CO5
	Total				40 Hours	

	Textbooks
Sr No	Book Details
1	B. V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill Publishing Company Ltd., 2008.
2	B. S. Grewal, Higher Engineering Mathematics, Khanna Publisher, 2005.
3	R K. Jain & S R K. Iyenger , Advance Engineering Mathematics, Narosa Publishing House 2002.
4	E. Kreyszig, Advance Engineering Mathematics, John Wiley & Sons, 2005.
	Reference Books
Sr No	Book Details
1	Peter V. O'Neil, Advance Engineering Mathematics, Thomson (Cengage) Learning, 2007.
2	Ray Wylie C and Louis C Barret, Advanced Engineering Mathematics, Tata Mc-Graw-Hill; Sixth Edition.
	Links
Unit 1	https://archive.nptel.ac.in/courses/111/101/111101153/
Unit 2	https://archive.nptel.ac.in/courses/111/107/111107105/
Unit 3	https://archive.nptel.ac.in/courses/111/107/111107056/
Unit 4	https://archive.nptel.ac.in/courses/111/103/111103070/
	https://nptel.ac.in/courses/111107058
Unit 5	https://archive.nptel.ac.in/courses/127/106/127106227/
	https://archive.nptel.ac.in/courses/111/102/111102111/

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY GREATER NOIDA-201306

(An Autonomous Institute)

School of Computer Science in Emerging Technology

Subject Name: Discrete Structures

Subject Code: BCSE0306

Applicable in Department: All Branches

Pre-requisite of Subject: Some basic knowledge of algebra and logic is usually sufficient to begin studying discrete mathematics for computer science. Familiarity with sets, functions, and basic Boolean algebra is also helpful.

Course Objective: The objective of discrete structure is to enable students to formulate problems precisely, solve the problems, apply formal proofs techniques and hence enhance one's logical thinking and problem-solving skills.

Course Outcomes (CO)

urse outo		Bloom's Knowledge Leve (KL)
CO 1	Apply the basic principles of sets, relations & functions and mathematical induction in computer science & engineering related problems.	КЗ
CO2	Describe the algebraic structures and it's properties to solve complex problems.	К2
CO3	Describe lattices and it's type to simplify digital circuits.	К2
CO4	Infer the validity of statements and construct proofs using predicate logic formulas.	К4
CO5	Design and use non-linear data structure like graphs to solve real world problems.	К4

Syllabus

(L+P) Lab Nos

L-T-P [3-1-0]

1 Set Theory	Module 1.1: Set Theory	Set Theory: Definition of sets, countable and uncountable sets, Set operations, Partition of set, Cardinality, Venn Diagrams, proofs of some general identities on sets, Applications of set Theory	Notes, PPT, Online	8 L	NA	C01
& Relations	Module 1.2: Relations	Relation: Definition, types of relation, composition of relations, Equivalence relation, Partial ordering relation, Applications of Relations	Notes, PPT,			
2 Algebraic Structures	Module 2.1: Algebraic Structures	Definition, Properties, types: Semi Groups, Monoid, Groups, Abelian group, Properties of groups, Subgroup, cyclic group, Permutation group, Cosets, Normal subgroup, Homomorphism and isomorphism of Groups, Applications of Algebraic Structure	Notes, PPT, Online Videos & R2	8 L	NA	CO2
3 Posets, Hasse Diagram and Lattices	Module 3.1: Posets, Hasse Diagram and Lattices:	Introduction, ordered set, Hasse diagrams of partially ordered set, isomorphic ordered set, well ordered set, properties of lattices, types of lattices, Applications of Lattice	Notes, PPT,	8 L	NA	СОЗ
4 Propositional & Predicate Logic	Module 4.1: Propositional Logic	Contradictions, CNF, DNF Algebra of Proposition.	Notes, PPT,	8 L	NA	CO4
	Module 4.2: Predicate Logic	Predicate, Quantifiers, Inference Theory of Predicate Logic, Application of Predicate Logics.	Lecture Notes, PPT, Online Videos & R2			
-	Module 5.1: Graphs	Definition and terminology, Representation of Graphs, Paths connectivity, Walks, Paths, Cycles, Bipartite, Regular, Planar and connected graphs,	Lecture Notes, PPT, Online	8 L	NA	CO5

Graphs	Components, Euler graphs, Euler's theorem, Hamiltonian path and circuits, Graph coloring, chromatic number, isomorphism and homomorphism of graphs. Application of Graphs	Videos & R2				
	Total		40 Hours			
	Textbooks					
Sr. No.	Book Details	5				
1	Swapanm Kumar Sarkar, "A Textbook of Discrete Mathematics", S. Chang	d Publication, 9	th Edition, 2021			
2	T Veerarajan, "Discrete Mathematics, with Graph Theroy and Combinator	rics" TMH Publ	ication, 4 th Edition, 2021			
	Reference Books					
Sr. No.	Book Details					
1	B. Kolman, R.C. Busby, and S.C. Ross, Discrete Mathematical Structures, Prentice Hall, 6th Edition, 2020.					
2	Liptschutz, Seymour, "Discrete Mathematics", TMH, 4th Edition, 2021.					
3	Kenneth H. Rosen, Kamala Krithivasan, "Discrete Mathematics and its Applications", TMH, 8th Edition, 2021					
	Links					
Unit 1	https://www.youtube.com/watch?v=hGtOLG3Ssjl&list=PLwdnzlV3ogoVx https://www.youtube.com/watch?v=rGcTcGFx9_s&list=PLwdnzlV3ogoVx https://www.youtube.com/watch?v=BIKq9Xo_5A&list=PL0862D1A9472	VxCTII45pDVM	11aoYoMHf&index=10			

Unit 2	https://www.youtube.com/watch?v=dQ4wU0k7JKI&list=PL0862D1A947252D20&index=35
	https://www.youtube.com/watch?v=CjmWE-f3vEc&list=PLwdnzIV3ogoVxVxCTII45pDVM1aoYoMHf&index=41
Unit 3	https://www.youtube.com/watch?v=qPtGlrb_sXg&list=PL0862D1A947252D20&index=40
Unit 4	https://www.youtube.com/watch?v=xlUFkMKSB3Y&list=PL0862D1A947252D20&index=1
	https://www.youtube.com/watch?v=DmCltf8ypks&list=PL0862D1A947252D20&index=3
Unit 5	https://www.youtube.com/watch?v=E40r8DWgG40&list=PLEAYkSg4uSQ2fXcfrTGZdPuTmv98bnFY5

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY GREATER NOIDA-201306

(An Autonomous Institute)

School of Computer Science in Emerging Technology

Subject N	lame: Foundat	ion of Cloud Computing					L-1	Г-Р [3-0-0]
Subject C	ubject Code: BCS0301 Applicable							tment: CS
Pre-requi	site of Subject	Basic of Computers and Knowledge	e of Programming					
	bjective : Intro	duce the concept of Cloud Compu-	ting to understan	d the Services	& Storage. Gair	n a knov	wledge of	
		-	Outcomes (CO)				
Course ou	u tcome: After co	ompletion of this course students wi	ll be able to:					(nowledge I (KL)
CO 1	Understand the	fundamental concepts of cloud com	nputing.				К	(2
CO2		abling technologies such as virtualiza Id their roles in cloud computing.	ation, networking	fundamentals,	and service-orien	ted	к	2
Apply various aspects of cloud architecture, including layered design, deployment models, storage options, CO3 and database technologies used in cloud environments.						tions,	к	(3
Analyze skills in resource management techniques, such as inter-cloud resource management, provisioning CO4 methods, and security.						oning	к	(4
CO5	CO5 Apply knowledge gained from case studies and advancements in cloud computing						КЗ	
			Syllabus					
Unit No	Module Name	Topic covered		Pedagogy	Lecture Required (L+P)		tical/ gnment/ Nos	CO Mapping

1	Introduction toCloud	Cloud, Characteristics, Elasticity in Cloud, On- demand Provisioning, EC2 Instances and its types, Cloud	Whiteboard, Smartboard	8L+2P	Programs No. 1,2	CO1
2	Cloud Enabling Technologies	economics. Service Oriented Architecture, REST and Systems of Systems, Web Services, Publish Subscribe Model, Basicsof Virtualization, Types of Virtualizations, Implementation Levels of Virtualization, Virtualization Structures, Tools and Mechanisms, Virtualization of CPU, Memory – I/O Devices, Virtualization Support and Disaster Recovery, Networking fundamentals	Whiteboard, Smartboard	8L+2P	Program No. 3	CO2
3	Cloud Architecture, Services and Storage	Layered Cloud Architecture Design, NIST Cloud Computing Reference Architecture, Public, Private and Hybrid Clouds – IaaS – PaaS – SaaS, Architectural DesignChallenges, database storages, Cloud Storage, Storage- as-a-Service –, Advantages of Cloud Storage –, Cloud Storage Providers - S3, RDS, EBS.	Whiteboard, Smartboard	8L+2P	Programs No. 4,5,6	CO3

		Inter Cloud Resource Management, Resource						
		Provisioning and Resource Provisioning Methods,						
	Resource	Global Exchange of Cloud Resources, Security	Whiteboard,					
4	Management	Overview	Smartboard	8L+2P	Programs No. 7,8	CO4		
	and Security in Cloud	– Cloud Security Challenges, Software-as-a-Service Security, Security Governance, Virtual Machine						
		Security, IAM, Security Standards, VPC						
		Case Study based on cloud computing, open						
		Source& Commercial Engine, Programming	Whiteboard,					
	Case Studies	Environment for Google App Engine, Open Stack,	Smartboard					
5	and	Scaling and Monitoringinstances, Federation in the		8L+2P	Program No. 9	CO5		
	Advancement	Cloud, Four Levels of Federation, Federated Services	5					
	s	and Applications, Future						
		of Federation, serverless computing						
		Total		(401	Γ+10P) = 50 Hours			
		Textbooks		<u> </u>				
Sr No		Book Details						
1	1 Nayan B. Ruparelia- Cloud Computing revised and updated edition, 2023							
2	Anders Lisdorf- Cloud Computing Basics, 2021							
3	Dr. Arun Singh Cho	uhan, Bipin Pandey, Vishwas Srivastava -Fundamenta	ls of Cloud Computi	ng 2020				
1	1							

4	Ritting house, John W., And James F. Ransome- Cloud Computing: Implementation, Management and Security, CRCPress, 2017.							
	Reference Books							
Sr No	Book Details							
1	Dina Darwish- Fundamental Concepts of Cloud Computing, 2024							
2	Dr. Kandan- Fundamental of Cloud Computing, 2023							
3	Stephen Baron- AWS: The Complete Beginner's Guide 2020							
	Links							
Unit 1	https://nptel.ac.in/courses/106/104/106104182/							
	https://www.youtube.com/watch?v=M988_fsOSWo&t=4s							
	https://www.youtube.com/watch?v=JYq1AQkMdhE							
	https://www.youtube.com/watch?v=iSG_72VNBVs&t=55s							
Unit 2	https://nptel.ac.in/courses/106/105/106105167/							
	https://youtu.be/FZR0rG3HKIk?si=i9Ol3TdleWtC-UUJ							
Unit 3	https://aws.amazon.com/							
	https://www.youtube.com/watch?v=36zducUX16w							
	https://www.youtube.com/watch?v=3WIJ4axzFIU							
Unit 4	https://www.youtube.com/watch?v=m8iz4CFVWK0							
	https://www.youtube.com/watch?v=IKxigcbhsGk							
	https://www.youtube.com/watch?v=NbkPRn1mqlU							
Unit 5	https://youtube.com/playlist?list=PL1TLTEHdRxDbFyipEb0KENRuBTI9yUu26&si=Si2LGUG6fu6v0Jr3							

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY

GREATER NOIDA-201306

(An Autonomous Institute)

School of Computer Science in Emerging Technology

Subject Name: Data Structures and Algorithms-I L-T						
Subject Co	de: BCSE0301	Ар	plicable in Departmo	ent: CSE/IT	/CS/AI/AIML/I	OT/ DS/CYS
Pre-requis	ite of Subject: C, Python					
Course Ob structures.	jective : The objective of the	e course is to learn the basic concep	ots of algorithm analysis,	along with ir	nplementation of	linear data
		Course Outcom	es (CO)			
Course ou	tcome: After completion of	this course students will be able to:				Bloom's Knowledge Level(KL)
CO1	Understand the concept of a	algorithm analysis and its importance	ce for problem solving.			К2
CO2	Implementation of Arrays fo	or searching, sorting and hashing to	foster critical thinking.			КЗ
CO3	Compare and contrast linke	d list with arrays and implementation	on of linked list with its a	pplications.		К4
CO4	Understand static and dynai problem-solving.	mic implementation of stacks, while	e mastering principle of i	recursion for	effective	К3
CO5	Implementation and analysi across diverse contexts.	s of divide & conquer algorithms an	d greedy approach for ϵ	efficient prob	lem-solving	К3
		Syllabu	S			
Unit No	Init No Module Name Topic covered Pedagogy Lecture Practical/ (L+P) Lab Nos					
1 Introduction to Data	Algorithms Analysis and	Algorithms, Analyzing Algorithms, Complexity of Algorithms, Amortized Analysis, Growth of Functions, Methods of solving	Lectures, Code Walkthroughs, Hand- on Programming, Problem Solving, Collaborative Learning,		Program to compare the time complexities of	CO1

Structure and Algorithms	Time and Space Complexity of a algorithm, Asymptotic notations (Big Oh, Big Theta and Big Omega), Abstract Data Types (ADT).		competitive coding Projects, Assessments. Lectures, Problem Solving, Collaborative Learning, Assessments	8L+6P	various algorithms by plotting the graph	
	Module 1.2: Fundamentals of D.S.	Data types: Primitive and non- primitive, Introduction to Data structure, Types of Data Structures- Linear & Non-Linear Data Structures.				
2 Design and Analysis of Algorithms: Arrays, searching and sorting, Hashing	Module 2.1: Arrays	Arrays: Definition, Single and Multidimensional Arrays, Representation of Arrays: Row Major Order, and Column Major Order, Derivation of Index Formulae for 1-D,2-D,3-D and n-D Array Application of Arrays: Sparse Matrices and their Representations.	Lectures, Code Walkthroughs, Hand- on Programming, Problem Solving, Collaborative Learning, competitive coding, Projects, Assessments	8L+12P	Implementation of Arrays, Row Major Order, and Column Major Order, Representation of sparse matrix, Linear search, Binary	CO2
	Module 2.2: Searching and Sorting	Searching algorithm with analysis: Linear search, Binary search. Sorting algorithm with analysis: Bubble sort, Insertion sort, Selection sort, Shell Sort, Sorting in Linear Time- Counting Sort.			search.	
	Module 2.3: Hashing	Hashing: The symbol table, Hashing Functions, Collision- Resolution Techniques, hashing for direct files.				

3 Design and Analysis of Algorithms: Linked lists Data Structure	Module 3.1: Linked List	Comparison of Array, List and Linked list Types of linked list: Singly Linked List, Doubly Linked List, Circular Linked List Polynomial Representation and Addition of Polynomials	Lectures, Code Walkthroughs, Hand- on Programming, Problem Solving, Collaborative Learning, competitive coding, Projects, Assessments.	8L+12P	Operations on a Linked List: Insertion, Deletion, Traversal, Reversal, Searching	CO3
4 Design and Analysis of Algorithms based: Stacks Data Structure and Recursion	Module 4.1: Stacks Module 4.2: Recursion	Primitive Stack operations: Push & Pop, Array and Linked List Implementation of Stack, Application of stack: Infix, Prefix, Postfix Expressions and their mutual conversion, Evaluation of postfix expression. Principles of recursion, Tail recursion, Removal of recursion, Problem solving using iteration	Lectures, Code Walkthroughs, Hand- on Programming, Problem Solving, Collaborative Learning, Projects, Assessments.	8L+12P	Operations on stacks and question. Recursion Application	CO4
	Module 4.3: Queue	 and recursion with examples such as binary search, Fibonacci series, and Tower of Hanoi, Trade-offs between iteration and recursion. Merge sort and Quick sort algorithms with analysis. Array and linked List implementation of queues, Operations on Queue: Create, Insert, Delete, Full and Empty, Circular queues, Dequeue and Priority Queue algorithms with analysis 				

5 Design and Analysis of Algorithms: Queues Data Structure	Module 5.1: Divide and Conquer and Greedy Methods	Divide and Conquer concepts with Examples Such as Quick sort, Merge sort, Convex Hull. Greedy Methods with Examples Such as Activity Selection, Task Scheduling, Fractional Knapsack Problem.	Lectures, Code Walkthroughs, Hand- on Programming, Problem Solving, Collaborative Learning, Projects, Assessments.	8L+6P	Divide and conquer methods and greedy methods	CO5
	Tota	al	(40	0L+48P) =	88 Hours	
		Text	tbooks			
Sr. No.		Bool	< Details			
1	Michael T. Goodrich, Rober	to Tamassia, "Data Structures and Al	gorithms in Python: An I	ndian Adapt	ation", 1st Edition,	2021.
2	Horowitz and Sahani, "Fund	damentals of Data Structures", Comp	uter Science Press, 1 st Ec	lition, 1993.		
3	Lipschutz, "Data Structures	" Schaum's Outline Series, Tata McG	raw-hill Education (India)) Pvt. Ltd, 2r	nd Edition, 2017	
		Referenc	e Books			
Sr. No.		Book	c Details			
1	Reema Thareja, "Data Structure Using C", Oxford University Press, 2 nd Edition, 2014.					
2	AK Sharma, "Data Structure Using C", Pearson Education India, 2 nd Edition,2011.					
3	P. S. Deshpandey, "C and Data structure", Wiley Dreamtech Publication, 1 st Edition, 2004.					

	Links
Unit 1	https://youtu.be/u5AXxR4GnRY
Unit 2	https://www.youtube.com/watch?v=LQx9E2p5c&pp=ygUMYXJyYXlzIG5wdGVs
Unit 3	https://www.youtube.com/watch?v=K7VIKIUdo20&pp=ygUPbGluayBsaXN0IG5wdGVs
	https://www.youtube.com/watch?v=g1USSZVWDsY&list=PLB3CD0BBB95C1BF09&index=2&pp=iAQB
Unit 4	https://www.youtube.com/watch?v=THMyk2_p530&pp=ygUccXVIdWUgZGF0YSBzdHJ1Y3R1cmUgICBucHRIbA%3D%3D
	https://www.youtube.com/watch?v= VV9v41FIq0&pp=ygUZZGI2aWRIIGFuZCBjb25xdWVyICBucHRIbA%3D%3D
Unit 5	https://www.youtube.com/watch?v=ARvQcqJ -NY&list=PLfFeAJ-vQopt S5XlayyvDFL mi2pGJE3

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY GREATER NOIDA-201306 (An Autonomous Institute) School of Computer Science in Emerging Technology

L-T-P [3-0-0]

Subject Code: BCSAI0302

Applicable in Department: AI/AIML/DS/CS/CYS

Pre-requisite of Subject: 1. Basic knowledge of computer systems.

Subject Name: Logic Design and Computer Architecture

2. Logic gates and their operations.

Course Objective: To understand the types of organizations, structures, and functions of computers, design of arithmetic and logic units, and float point arithmetic. To understand the concepts of the memory system, communication with I/O devices, and interfaces.

	Course Outcomes (CO)						
Course	e outcome: After completion of this course students will be able to:	Bloom's Knowledge Level (KL)					
CO 1	Explain the basics of Digital Logic Fundamentals	К1, К2					
CO2	Analyze the Functional units of a computers	К2, К3					
CO3	Implement the Arithmetic Logic and Control Units	К2, К4					
CO4	Understand the basic of Memory Organization	К2, К4, К5					
CO5	Explain different ways of communicating with I/O devices	К2, К4, К5					
	Syllabus						

Unit No	Module Name	Topic covered	Pedagogy	Lecture Required (L+P)	Practical/ Assignment/ Lab Nos	CO Mapping
1	Digital Logic Fundamen tal	Basic of Number System, Boolean Algebra and Logic gates, Introduction of Combinational Logic Circuits: Adders, Substractors, Multiplexers, Demultiplexers, Encoder and Decoder. Basics of Sequential Logic Circuits: Flip-Flops, Register and Counters.	Lecture, Numerical Discussion	8L	Assignment/Practical/Quizzes	CO1
2	Computer Basics	Functional units of a DigitalSystemandtheirInterconnections,Buses:TypesofBuses,BusesBuses,BusArbitrationanditsArbitrationanditsRegisterandMemoryTransfer,ProcessorOrganization:GeneralRegistersOrganization,SingleAccumulatorOrganizationInstructionformatandAddressingmodes.	Lecture, Numerical Discussion	8L	Assignment/Practical/Quizzes	CO2
3	Arithmetic Logic Unit	ALU: Carry look-ahead Adder. Multiplication: Signed operand				CO3

	and Control Unit	 multiplication, Booth's Algorithm and Array Multiplier, Division. Floating-point Arithmetic Operation, 1-bit ALU. IEEE Standard for Floating- Point Numbers. CU: Instruction: Instruction types, Instruction cycles and Sub-cycles, Micro- operations and Execution of a complete Instruction. RISC, CISC Architecture. Hardwire and Microprogrammed Control Unit. 	Lecture, Numerical Discussion	8L	Assignment/Practical/Quizzes	
4	Memory Organizati on	Memory hierarchy concept, RAM: SRAM and DRAM, ROM and SSD. Locality of reference property, Cache Memory: Concept with Design issues, Hit ratio, Address Mapping, Page Replacement Algorithm: FIFO, LRU, LIFO and Optimal page.	Lecture, Numerical Discussion	8L	Assignment/Practical/Quizzes	CO4
5	Peripheral Devices and Parallel	Peripheral devices, I/O ports and Interfacing, Types of interrupts. Modes of Data Transfer: Programmed I/O, Interrupt Initiated I/O and Direct Memory Access.		8L	Assignment/Practical/Quizzes	CO5

Processin g	SerialCommunication:Synchronous&Asynchronous	Lecture, Numerical Discussion			
	communication. Arithmetic and Instruction pipeline, Hazards and Concepts of Parallel Processing.				
1	Total		1	40 Hours	1

	Textbooks
Sr No	Book Details
1	M. Mano, "Computer System Architecture", 3rd Edition, Pearson Publication, 2007.
2	John P. Hayes, Computer Architecture and Organization, Tata McGraw Hill, Third Edition, 1998.
3	William Stallings, Computer Organization and Architecture-Designing for Performance, Pearson Education, Seventhedition, 2006.
	Reference Books
Sr No	Book Details
1	Carl Hamacher, ZvonkoVranesic, SafwatZaky Computer Organization, McGraw-Hill, Fifth Edition, Reprint2012
2	Ray A K, Bhurchandi K M, "Advanced Microprocessors and Peripherals", TM.
3	Kai Hwang "Computer Architecture & Parallel Processing" Mcgraw Hill Education
	Links

Unit 1	tps://www.youtube.com/watch?v=L9X7XXfHYdU&list=PLxCzCOWd7aiHMonh3G6QNKq53C6oNXGrX
Unit 2	tps://www.youtube.com/watch?v=WLgXUPOjKEc
Unit 3	tps://www.youtube.com/watch?v=BPhWIFIU1rc
Unit 4	tps://www.youtube.com/watch?v=6R7JDkpG1Wk&list=PLrjkTql3jnm8HbdMwBYIMAd3UdstWChFH
Unit 5	tps://www.youtube.com/watch?v=nxryfWg5Hm4

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY GREATER NOIDA-201306

(An Autonomous Institute)

School of Computer Science in Emerging Technology

Subject Na	me: Object Oriented Techniques using Java	L-T-P [0-0-6]
Subject Co	de: BCSE0352 Applicable in Department: CSE/IT/AI/AIM	L/DS/CYS/CS
Pre-requis	tes of the Subject: 1. Student must know at least the basics of computer skills, and should be able to start a command line	shell.
2. Knowledg	e of basic programming concepts.	
Course Ob	ective- The objective of this course is to understand the object-oriented methodology, and its techniques to design stand alc	one and GUI
applications	using hands-on engaging activities.	
	Course Outcomes (CO)	
Course out	come: After completion of this course students will be able to:	Bloom's
		Knowledge
		Level (KL)
CO 1	Understand the concepts of object-oriented programming and relationships among them needed in modeling.	К2
CO2	Demonstrate the Java programs using OOP principles and also implement the concepts of lambda expressions.	К3
CO3	Analyze packages with different protection level resolving namespace collision and implement the error handling concepts for uninterrupted execution of Java program.	К4
CO4	Implement Concurrency control, I/O Streams and Annotations concepts by using Java program.	К3
CO5	Design and develop the GUI based application, Generics and Collections in Java programming language to solve the real- world problem.	К6
	Syllabus	

Unit No.	Module Name	Topic covered	Pedagogy	Lecture Required (L+P)	Practical/ Assignment/ Lab Nos	CO Mapping
	Module 1.1: Object Oriented Programming	Introduction and Pillars of OOP with real life example, jvm architecture and its components		3 (1+2)	Setting class path variables, Compilation of java file and execute its byte code.	
1 Basics of Java	Module 1.2: Modelling Concepts	Association, Composition, aggregation, realization, and Generalization.	T1, R1, Smart Board/PPT/ Online	3(1+2)	Designing object and class diagram with UML concepts.	CO 1
Programming	Module 1.3: Control Statements	Decision Making, Looping and Branching, Argument Passing Mechanism: Command Line Argument, Console Input.	Programs	4(1+3)	Implementation of java programs on control statements.	
	Module 1.4: Class and Object	Object Reference, Constructor, Abstraction: Abstract Class, Interface and its uses, Defining Methods, Use of "this" and "super" keyword, Garbage Collection and finalize () Method etc.		8 (2+6)	Implementation of Java Basics, Class, Object, abstract class interface, garbage collection.	
2	Module 2.1: Inheritance	Constructors and super constructor in Inheritance.	T1, R1, Smart Board/PPT/ Online	4 (1+3)	Implementation of inheritance concept.	CO2

OOPs features, arrays and lambda expressions	Module 2.2: Polymorphis m	Introduction and Types of Polymorphism, Overloading and Overriding	Programs	4 (1+3)	Implementation of polymorphism concept.	
	Module 2.3: Lambda expression	Introduction and Working with Lambda Variables.		2(1+1)	Programs based on Lambda expression.	
	Module 2.4: Arrays	Introduction to Arrays and its Types.		4(1+3)	Programs based on array concept.	
	Module 3.1: Packages	Introduction to Packages and its Types, Access Protection in Packages, Import and Execution of Packages.	T1, R1, Smart	3 (1+2)	Implementation of	
3 Packages, Exception Handling and String	Module 3.2: Exception Handling, Assertions and Localizations	Exceptions vs. Errors, Handling of Exception. Finally, Throws and Throw keyword, Multiple Catch Block, Nested Try and Finally Block, Tokenizer. Assertions and Localizations Concepts and its working.	Board/PPT/ Online Programs	5 (2+3)	java package, Exception handling, Assertion, Localization and String handling	CO3
Handling	Module 3.3: String Handling	String Types, Operations, Immutable String, Method of String class, String Buffer and String Builder class.		5 (2+3)		
4	Module 4.1: Threads	Overview of Threads, Creating Threads, Thread Life-Cycle, Thread Priorities, Daemon Thread, Runnable Class, Synchronizing Threads etc.	T2, R2, Smart Board/PPT/ Online	4(2+2)	Implementation of Multi-threading, Annotation,	
Concurrency in Java and I/O Stream	Module 4.2: I/O Stream	Common I/O Stream Operations, Interaction with I/O Streams Classes.	Programs	3(1+2)	Character and Byte Stream classes java.io	CO4
	Module 4.3: Annotations	Introduction, Custom Annotations and Applying Annotations.		3(1+2)	package.	

5 GUI Programming, Generics and	GUI		T2, R2, R3		Implementation of AWT & Swing components,	
	Module 5.2: Generics	Introduction to Generic Classes, Initializing a Generic Object, Generic Cell Driver Class, Generic Methods, Use enumerated type.	Smart Board/PPT/ Online Programs	- ()	Layout Manager classes, Generic & Collection, and	CO5
	Collections	Introduction to Collections, Using Method References, Using Wrapper Class, Using Lists, Sets, Maps and Queues, Collection using Generics, Iterators		6(2+4)	Wrapper classes	
		Total			(23T+47P) = 70 Hot	urs

Cr. No		
Sr. No.	Program Title	Mapping
1	Understanding Text Editors to Write Programs, Compile and run first java file and Byte Code and class file	CO1
2	Sketch a class and object diagram by describing the sales order system of a restaurant.	CO1
3	Sketch a class diagram by describing the circle and rectangle class.	CO1
4	Sketch a class diagram for a college platform including, classroom, playground, chair, table, smart board, teaching staff etc.	CO1
5	Sketch a class diagram containing class called Employee, which models an employee with an ID, name and salary. Add method raisesalary(percent) that increases the salary by the given percentage.	CO1
6	Program to display the default value of all Primitive data types	CO1
7	Implement the code using main() method to calculate and print the Total and Average Marks scored by a student from the input given through the command line arguments and assume that four command line arguments name , marks1, marks2, marks3 will be passed to the main() method in the below class with name TotalAndAvgMarks .	CO1

3	Write code which uses if-then-else statement to check if a given account balance is greater or lesser than the minimum balance. Write a class BalanceCheck with public method checkBalance that takes one parameter balance of type double. Use if-then-else statement and print Balance is low if balance is less than 1000. Otherwise, print Sufficient balance.	CO1
9	A class NumberPalindrome with a public method isNumberPalindrome that takes one parameter number of type int. Write a code to check whether the given number is palindrome or not. For example Cmd Args : 333	CO1
.0	333 is a palindrome Write a class FibonacciSeries with a main method. The method receives one command line argument. Write a program to display fibonacci series i.e. 0 1 1 2 3 5 8 13 21	CO1
.1	Write a Java Program to find the Factorial of a given number.	CO1
2	Java Program to create a class, methods and invoke them inside main method.	CO1
13	 Write a Java program to illustrate the abstract class concept. Create an abstract class Shape, which contains an empty method numberofSides(). Define three classes named Trapezoid, Triangle and Hexagon extends the class Shape, such that each one of the classes contains only the method numberofSides(), that contains the number of sides in the given geometrical figure. Write a class AbstractExample with the main() method, declare an object to the class Shape, create instances of each class and call numberofSides() methods of each class. 	CO1
.4		CO1
5	Java Program to illustrate static class.	CO1
6	Write a java program to access the class members using super keyword	CO1
.7	Java program to access the class members using this keyword	CO1
.8	Implement an interface named MountainParts that has a constant named TERRAIN that will store the String value "off_road". The interface will define two methods that accept a String argument name newValue and two that will return the current value of an instance field. The methods are to be named: getSuspension, setSuspension, getType , setType.	CO1
19		CO1
0	Java program to demonstrate nested interface inside a class.	CO1

21	Java program to explicit implementation of garbage collection by using finalize() method	CO1
22	JAVA program to implement Single Inheritance	CO2
23	JAVA program to implement multi-level Inheritance	CO2
24	JAVA program to implement constructor and constructor overloading.	CO2
25	JAVA program implement method overloading.	CO2
26	JAVA program to implement method overriding.	CO2
27	Java program to implement lambda expression without parameter.	CO2
28	Java program to implement lambda expression with single parameter.	CO2
29	Java program to implement lambda expression with multi parameter.	CO2
30	Java program to implement lambda expression that iterate list of objects	CO2
31	Java program to define lambda expressions as method parameters	CO2
32	 Write a class CountofTwoNumbers with a public method compareCountof that takes three parameters one is arr of type int[] and other two are arg1 and arg2 are of type int and returns true if count of arg1 is greater than arg2 in arr. The return type of compareCountof should be boolean. Assummptions: arr is never null arg1 and arg2 may be same 	CO2
33	JAVA program to show the multiplication of two matrices using arrays.	CO2
34	Java Program to search an element using Linear Search	CO2
35	Java program to search an element using Binary Search	CO2
36	Java Program to sort element using Insertion Sort	CO2
37	Java Program to sort element using Selection Sort – Largest element Method	CO2
38	java program to Sort elements using Bubble Sort	CO2

39	Java program to create user defined package.	CO3
40	Java Program to create a sub- classing of package	CO3
	Implement the following:	CO3
41	 Import package.*; 	
	 import package.classname; 	
	Using fully qualified name.	
42	Implement and demonstrate package names collision in java	CO3
43	Java program to handle and Arithmetic Exception Divided by zero	CO3
44	Java Program to implement User Defined Exception in Java	CO3
45	Java program to illustrate finally block	CO3
46	Java program to illustrate Multiple catch blocks	CO3
47	Java program for creation of illustrating throw in exception handling.	CO3
48	Implement the concept of Assertion in Java Programming Language	CO3
49	Implement the concept of Localization in Java Programming Language.	CO3
50	Java program to print the output by appending all the capital letters in the input string.	CO3
51	Java program that prints the duplicate characters from the string with its count.	CO3
52	Java program to check if two strings are anagrams of each other	CO3
53	Java Program to count the total number of characters in a string	CO3
54	Java Program to count the total number of punctuation characters exists in a String	CO3
55	Java Program to count the total number of vowels and consonants in a string	CO3
56	Java Program to show .equals method and == in java	СОЗ
57	Given a string, return a new string made of n copies of the first 2 chars of the original string where n is the length of the string. The string may be any length. If there are fewer than 2 chars, use whatever is there. If input is "Wipped" then output should be "WiWiWiWiWi".	CO3

58	Given two strings, a and b, create a bigger string made of the first char of a, the first char of b, the second char of a, the second char of b, and so on. Any leftover chars go at the end of the result. If the inputs are "Hello" and "World", then the output is "HWeolrIlod".	CO3
59	JAVA program to show the usage of string builder.	СОЗ
60	JAVA program to show the usage of string buffer.	СОЗ
61	Creating and Running a Thread	CO4
62	Implementing Runnable Interface	CO4
63	Synchronizing Threads with lock	CO4
64	Synchronizing Threads without lock	CO4
65	JAVA program to implement even and odd threads by using Thread class .	CO4
66	JAVA program to implement even and odd threads by using Runnable interface.	CO4
67	JAVA program to synchronize the threads by using Synchronize statements and Synchronize block.	CO4
68	Demonstrate the concept of type annotations in the JAVA programming language.	CO4
69	Demonstrate the concept of user-defined annotations in the JAVA programming language.	CO4
70	JAVA program to implement that read a character stream from input file and print it into output file.	CO4
71	JAVA program to implement that merge the content of two files (file1.txt, file2.txt) into file3.txt.	CO4
72	Write a Java program that reads the contents of one file and copies them to another file.	CO4
73	Write a Java program that reads a text file and counts the number of words in it.	CO4
74	Write a Java program that reads a text file and counts the frequency of each word in it.	CO4
75	Write a Java program that reads a text file and adds line numbers to each line. The program should create a new file	CO4
	with the line numbers added to the beginning of each line.	
76	Write a Java program that reads two binary files and compares them byte by byte to determine if they are identical. Display a message indicating whether the files are the same or different.	CO4
77	Program to create a frame with three button in AWT and swing	CO5

78	Program to display message with radio buttons in swing	CO5
79	Program to display "All The Best" in 5 different colors on screen. (Using AWT/Swing)	CO5
80	Program to implement event handling in a button "OK"	CO5
81	Java Program to implement BorderLayout	CO5
82	Java Program to implement GridLayout	CO5
83	Java Program to implement BoxLayout	CO5
84	Java Program to implement CardLayout	CO5
85	Java program to implement Generic class	CO5
86	Java program to illustrate Generic methods	CO5
87	Java program to implement wildcard in generics	CO5
88	Java program to implement of methods of HashSet	CO5
89	Java Program to implement methods available in HashMap class	CO5
90	Program to add, retrieve, and remove element from ArrayList	CO5
91	Create a method which can accept a collection of country names and add it to ArrayList with generic defined as String and return the List.	CO5
92	Create a method which can create a HashSet containing	CO5
	values 1-10. The Set should be declared with the generic type Integer. The method should return the Set.	
93	Java program to implement autoboxing	CO5
94	Java program to implement unboxing	CO5
95	Develop a java class with a method <i>storeEvenNumbers(int N)</i> using ArrayList to store even numbers from 2 to N, where N is a integer which is passed as a parameter to the method <i>storeEvenNumbers()</i> . The method should return the ArrayList (A1) created.	CO5
96	Create a method that accepts the names of five countries and loads them to an array list and returns the list.	CO5
97	Create a method which can accept a collection of country names and add it to ArrayList with generic defined as String and return the List.	CO5

	Textbooks			
Sr. No.	Book Details			
1	Herbert Schildt," Java: A Beginner's Guide", McGraw-Hill Education 2nd edition			
2	E Balagurusamy, "Programming with Java A Primer", TMH, 4th edition.			
	Reference Books			
Sr. No.	Book Details			
1	Cay S. Horstmann, "Core Java Volume I – Fundamentals", Prentice Hall			
2	Joshua Bloch," Effective Java", Addison Wesley			
3	Herbert Schildt," Java - The Complete Reference", McGraw Hill Education 12th edition			
	Links			
Unit 1	https://www.youtube.com/watch?v=r59xYe3Vyks&list=PLS1QulWo1RlbfTjQvTdj8Y6yyq4R7g-Al			
Unit 2	https://www.youtube.com/watch?v=ZHLdVRXIuC8&list=PLS1QulWo1RIbfTjQvTdj8Y6yyq4R7g-Al&index=18			
Unit 3	https://www.youtube.com/watch?v=hBh_CC5y8-s			
Unit 4	https://www.youtube.com/watch?v=qQVqfvs3p48			
Unit 5	https://www.youtube.com/watch?v=2qWPpgALJyw			

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY GREATER NOIDA-201306 (An Autonomous Institute) School of Computer Science in Emerging Technology

Subject	t Name: Data Structures and Algorithms-I Lab	L-T-P [0-0-4]			
Subject Code: BCSE0351 Applicable in Department: CSE/IT/CS/AI/AIN					
Pre-req	quisite of Subject: C, Python				
	Lab Experiments				
Course	e Objective: Learn to implement linear data structures.				
	Course Outcomes (CO)				
Course	e outcome: After completion of this course students will be able to:	Bloom's Knowledge Level(KL)			
CO 1	Implementing Single and Multi-dimensional array with their applications like searching and Sorting te	chniques. K3			
CO2	Implement Link list, Stack and Queues with their applications	К3			
CO3	Implementation and analysis of various operation like searching sorting and hashing.	К4			
	List of Practical's				
Sr. No	Program Title	CO Mapping			
1	Construct a program to compare the time complexities of selection, bubble and insertion sort by plot	ting the graph CO1			

2	Construct a program to compare the time complexities of various algorithms by varying size "n".	C01
3	Construct a Code to find the maximum element in an array.	CO2
4	Construct a Code to calculate the sum of all elements in an array.	CO2
5	Construct a Code to reverse the elements of an array.	CO2
6	Construct a Code to check if an array is sorted in ascending order.	CO2
7	Construct a Code to count the occurrence of a specific element in an array.	CO2
8	Construct a Code creation and traversal of 2D Array in row major and column major order.	CO2
9	Construct a code to print the transpose of a given matrix using function	CO2
10	Program to find if a given matrix is Sparse or Not and print Sparse Matrix	CO2
11	Construct a code to represent a sparse matrix in triplet form.	CO2
12	Construct a code to Implement Linear Search	CO2
13	Construct a code to implement Binary Search	CO2
14	Construct a program to Implement Selection Sort	CO2
15	Construct a program to Implement Bubble Sort	CO2
16	Construct a program to Implement Insertion Sort	CO2
17	Construct a program to Implement Shell Sort	CO2
18	Construct a program to Implement Counting Sort	CO2
19	Create a single linked list and perform basic operations (insertion, deletion, traversal).	CO3
20	Create a double linked list and perform basic operations (insertion, deletion, traversal).	CO3
21	Create a circular linked list and perform basic operations (insertion, deletion, traversal).	CO3
22	Create a circular double linked list and perform basic operations (insertion, deletion, traversal).	CO3
23	Reverse a single linked list.	CO3
24	Check if a linked list is palindrome.	CO3

25	Reverse a double linked list.	CO3
26	Find the middle element of a single linked list.	CO3
27	Find the middle element of a double linked list.	CO3
28	Merge two sorted single linked lists.	CO3
29	Detect and remove a loop in a circular linked list.	CO3
30	Construct a code to add two polynomials using linked list	CO3
31	Construct a program to Implement stack using array	CO3
32	Construct a program to Implement stack using a linked list	CO4
33	Construct a code to Infix to postfix conversion using a stack	CO4
34	Construct a code for Balanced parentheses checker using a stack	CO4
35	Implement Reverse a string using a stack.	CO4
36	Implement Binary Search using Recursion.	CO4
37	Construct a python program to print Fibonacci Series using Recursion.	CO4
38	Construct a code to implement Tower of Hanoi.	CO5
39	Construct a program to Implement queue using array.	CO5
40	Construct a code for Implementing a circular queue.	CO5
41	Construct a program to Implement queue using stack	CO5
42	Construct a program to Implement priority queue	CO5
43	Construct a program to Implement double ended queue	CO5
44	Construct a program to Implement Merge Sort with recursion	CO5

45	Construct a program to Implement Quick Sort with recursion	CO5	
46	Construct a program to Implement Merge Sort using iteration	CO5	
47	Construct a program to Implement Quick Sort using iteration	CO5	
48	Construct a program to Implement fractional knapsack	CO5	
49	Construct a program to Implement Activity selection problem	CO5	
50	Construct a program to Implement Job scheduling problem	CO5	
*Cor	*Competitive coding list will be shared with the students.		

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY GREATER NOIDA-201306 (An Autonomous Institute)

Subject N	Iame: Foundation of Cloud Computing Lab	L-T-P [0-0-2]
Subject (code: BCS0351	Applicable in Department: CS
	Lab Experiments	
	bjective: Learn to provide students with practical experience in using cloud services and tools. This in lutions, databases, networking configurations.	volvessetting up virtual machines,
	Course Outcomes (CO)	
Course o	utcome: After completion of this course students will be able to:	Bloom's Knowledge Level (KL)
CO 1	To know about the use AWS management console, create and manipulate Amazon instances.	К1
CO2	Access the encrypting and controlling of S3.	К2
CO3	Describe how to create private and virtual private clouds.	КЗ
CO4	Learn to create IAM group in cloud.	КЗ
CO5	Understand the steps of Installation of Open Stack.	К4
	List of Practical's	
		СО
Sr No	Program Title	Mapping

1	Navigate the AWS Management Console.	CO1
2	Create and manipulate Elastic Compute Cloud instances.	CO1
3	Monitoring Virtual Resources in AWS.	CO2
4	Getting Started with S3 in Cloud.	CO3
5	Working with EBS and EFS in AWS	CO3
6	Build a relational database server.	CO3
7	Create private cloud – Designing a Custom VPC (Virtual Private Cloud).	CO4
8	Create an IAM Group in Cloud.	CO4
9	Scaling and monitoring instances in AWS.	CO5

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY

GREATER NOIDA-201306

(An Autonomous Institute)

Subject Na	me: Artificial Intelligence and Cyber Ethics	L-T-P [2-0-0]	
Subject Co	de: BNC0301 Applicable in Departmer	t: All Branches	
Prerequisi	e of Subject: Basic understanding of computer systems and ethics.		
Course Ob	jective: The course aims to foster critical thinking about ethical issues, promote responsible use of technology, and	l ensure students	
can identify,	analyze, and address ethical dilemmas in Artificial Intelligence and cyber domains.		
	Course Outcome (CO)		
Course Ou	tcome: After completion of this course students will be able to:	Bloom's Knowledge Level (KL)	
CO 1	Learn key principles of AI ethics, summarizing ethical considerations and applications in AI development and deployment.	K2	
CO2	Apply policies and framework for Fairness in AI and Machine Learning	К3	
CO3	Apply privacy and security concepts, risk management and regulatory compliance in the field of AI and Cyber Security.	К3	
CO4	Understand the nature of cybercrimes, the principles of intellectual property rights (IPR), and the legal measures necessary to address and prevent these issues.	K2	
CO5 Describe the impact of AI in Society, employment and workforce.			
	Syllabus		

Unit No	Module	Topics Covered	Pedagogy	Lecture Required (T=L+P)	Aligned Practical/Assi gnment/Lab	CO Mapping
1	An overview to Al Ethics	Definition of AI. Ethical principles in AI. Sources of AI data. Legal implications of AI security breaches, Privacy and AI regulations. Key Principles of responsible AI, transparency and accountability, Dual-use dilemma, Human- centric design. Introduction to Cyber Laws and Ethics, Historical development of cyber laws, Legal frameworks.	Lecture and Case studies	5 L	Assignment	CO1
2	Fairness and Favoritism in Machine Learning	Introduction to Fairness and Bias in AI, Types of Fairness and Bias. Impact of Bias and Fairness in AI, techniques for measuring Fairness and Bias. Techniques for mitigating bias. Current policies and frameworks for fairness in AI. Bias in data collection, Fairness in data processing. Generative AI, Types of Bias in Generative AI.	Lecture and Case studies	6 L	Assignment	CO2
3	AI Ethics and Cybersecurity Principles	Importance of privacy and security in AI, AI specific security tools and software, privacy-preserving machine learning (PPML) and privacy-preserving data mining (PPDM)	Lecture and Case studies	8 L	Assignment	CO3

		Ethical considerations in phases of AI development life cycle, Risk management: Risk assessment and incident response Regulatory compliance: GDPR, HIPAA Case studies: Implementation of AI ethics guidelines and best practices in engineering projects, Ethical decision- making processes and tools for engineers working with AI technologies				
4	Cybercrimes, IPR and Legal Measures	Types of cybercrimes and their impact, Legal measures for cybercrime prevention and prosecution. IPR: Copyrights, trademarks, patents, and trade secrets, Ethical implications of intellectual property, Cyber security and privacy issues	Lecture and Case studies	5 L	Assignment	CO4

5	AI Contribution to Social Evolution	Positive and negative political impacts of AI, Role of AI in social media and communication platforms, AI-generated content and deepfakes, Applications of AI in addressing global challenges, Key technical stakeholders in AI deployment: developers, researchers, policymakers, Technical Impacts on Employment and Workforce: Automation technologies: robotic process automation (RPA), autonomous systems	Lecture and Case studies	6 L	Assignment	CO5
	Total				30 Hours	
		Text Book	S			
Sr No		Book Detai	ls			
1.	Introduction to Information Security and Cyber Laws, Simplified Chinese Edition by Surya Prakash Tripathi, Ritendra Goel, 1 January ,2014.			1 January		
2.	AI ETHICS: Paving the Path for Responsible Machine Learning, Shivanand Kumar, 2014.					

	Reference Books		
Sr No	Book Details		
1.	AI ETHICS (The MIT Press Essential Knowledge series), by Mark Coeckelbergh, 2018		
2.	Computers, Internet and New Technology Laws by Karnika Seth – by Karnika		
	Links		
Unit 1	https://www.youtube.com/watch?v=VqFqWIqOB1g		
Unit 2	https://www.youtube.com/watch?v=hVJqHgqF59A		
Unit 3	https://www.youtube.com/watch?v=O5RX_T4Tg24		
Unit 4	https://www.youtube.com/watch?v=RJZ0pxcZsSQ		
Unit 5	https://www.youtube.com/watch?v=I9FOswjTSGg		

Subject N	Name: Engineering M	lathematics-IV		L-T-P [3-1-0]		
Subject C	Code: BAS0402	Applicable in Departm	nent: CSE/CS/IT/IOT/ECE/CSE-R/ M	.Tech.(Int.) CSE		
Pre-requ	isites of the Subject:	Knowledge of Mathematics I and II of B. Tech or equiva	alent.			
Course O	bjective: The objective	of this course is to familiarize the students with statistic	cal techniques. It aims to present the stude	ents with standard		
concepts a	and tools at an intermedia	ate to superior level that will provide them well toward	ds undertaking a variety of problems in the	e discipline.		
		Course Outcomes (CO)				
Course o	utcome: After completi	on of this course students will be able to:		Bloom's Knowledge Level(KL)		
CO1	Understand the concept	of correlation, moments, skewness and kurtosis and c	urve fitting.	K1, K2		
CO2	Apply the concept of hyp	oothesis testing and statistical quality control to create	control charts.	К1, КЗ		
CO3	CO3 Remember the concept of probability to evaluate probability distributions.					
CO4	Understand the concept	of Mathematical Expectations and Probability Distrib	ution.	К2		
CO5	CO5 Solve the problems of Time & Work, Pipe & Cistern, Time, Speed & Distance, Boat & Stream, Analogy.					
	Syllabus					
Unit No	Module Name	Topic covered	Pedagogy Lecture Required (L+P) Lab Nos	e CO Mapping		

Total				40 H	ours	
5	Aptitude-IV	Time & Work, Pipe & Cistern, Time, Speed & Distance, Boat & Stream, Sitting arrangement, Analogy.	Class room Teaching, Smart Board, PPT, M- tutor.	8 L	Assignment 5	CO5
4	Expectations and Probability Distribution	Operation on One Random Variable – Expectations: Introduction, Expected Value of a Random Variable, Mean, Variance, Moment Generating Function, Binomial, Poisson, Normal, Exponential distribution.	Teaching, Smart Board, PPT, M- tutor.	8 L	Assignment 4	CO4
3	Probability and Random Variable	Random Variable: Definition of a Random Variable, Discrete Random Variable, Continuous Random Variable, Probability mass function, Probability Density Function, Distribution functions. Multiple Random Variables: Joint density and distribution Function, Properties of Joint Distribution function, Marginal density Functions, Conditional Distribution and Density, Statistical Independence, Central Limit Theorem (Proof not expected).	Board, PPT, M- tutor.	8 L	Assignment 3	CO3
2	Statistical Techniques-II	Testing a Hypothesis, Null hypothesis, Alternative hypothesis, Level of significance, Confidence limits, Test of significance of difference of means, Z-test, t- test and Chi-square test, F-test, One way ANOVA. Statistical Quality Control (SQC), Control Charts, Control Charts for variables (Mean and Range Charts), Control Charts for Variables (p, np and C charts).		8 L	Assignment 2	CO2
1	Statistical Techniques-I	Introduction: Measures of central tendency: Mean, Median, Mode, Moment, Skewness, Kurtosis, Curve Fitting, Method of least squares, Fitting of straight lines, Fitting of second degree parabola, Exponential curves, Correlation and Rank correlation, Linear regression, nonlinear regression and multiple linear regression	Class room	8 L	Assignment 1	C01

	Textbooks					
Sr No	Book Details					
1	P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Probability Theory, Universal Book Stall, 2003(Reprint).					
2	S. Ross: A First Course in Probability, 6 th Ed., Pearson Education India, 2002.					
3	W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, 3 rd Ed., Wiley, 1968.					
4	HaitaoGuo, Ramesh A. Gopinath, C.S. Burrus, IVAN W AUTOR SELESNICK, JAN E AUTOR ODEGARD, SidnyBurrus.					
	Reference Books					
Sr No	Book Details					
1	B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 35 th Edition, 2000.					
2	T.Veerarajan : Engineering Mathematics (for semester III), Tata McGraw-Hill, New Delhi.					
3	R.K. Jain and S.R.K. Iyenger: Advance Engineering Mathematics; Narosa Publishing House, New Delhi.					
4	J.N. Kapur: Mathematical Statistics; S. Chand & Sons Company Limited, New Delhi.					
5	D.N.Elhance,V. Elhance& B.M. Aggarwal: Fundamentals of Statistics; Kitab Mahal Distributers, New Delhi.					
	Links					
Unit 1	https://archive.nptel.ac.in/courses/110/107/110107114/					
	https://archive.nptel.ac.in/courses/111/105/111105042/					

Unit 2	https://archive.nptel.ac.in/courses/103/106/103106120/
Unit 3	https://archive.nptel.ac.in/courses/117/105/117105085/
Unit 4	https://archive.nptel.ac.in/courses/111/104/111104032/
	https://www.youtube.com/watch?v=KZ_M5RwaP6A
Unit 5	https://www.youtube.com/watch?v=WP4jsNRgfa4
	https://www.youtube.com/watch?v=jPaQDKbahU8
	https://www.youtube.com/watch?v=FwiWJLicakg

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY GREATER NOIDA-201306 (An Autonomous Institute)

Subject	Name	e: Technical Communi	cation				L-T	-Р [2-1-0]
Subject	Code	: BASL0401			Applica	ble in Dep	artment: All	Branches
Pre-requ	uisite	of Subject: B2 (CEFR lev	el) in the Core Skills test; B1/B2 in the	e Speaking and Wri	iting tests			
Course	Objec	tive: To develop commu	nication and critical thinking skills neo	cessary for succeed	ling in the di	iverse and e	ver-changing w	vorkplace of
the twent	ty first	century and help the stud	ents communicate effectively, creativ	ely, accurately, and	d appropriat	ely.		
			Course Outcom	es (CO)				
Course o	outco	me: After completion of t	his course students will be able to:					Bloom's Knowledge Level(KL)
CO 1	Comp	prehend the principles and	functions of technical communication	า.				K2
CO2	Write	e for a specific audience an	d purpose to fulfil the provided brief.					К5
CO3	Ident	ify and produce different k	inds of technical documents.					K2, K3
CO4	Apply	effective speaking skills to	efficiently carry out official discourse	es.				КЗ
CO5	Demo	onstrate understanding of	communication through digital media					К5
	4		Syllabus					
Unit No		Module Name	Topic covered		Pedagogy	Lecture	Practical/ Assignment / Lab Nos	CO Mapping
1		Introduction to Technical Communication						

	 Definition, Process, Types, Levels, Flow and Barriers to Technical Communication with emphasis on cultural differences and gender sensitivity. Gender-neutral language. 		6 L		CO1
	 Need for and Importance of Technical Communication – Significance of audience in technical communication 	Interactive & Flipped classroom method		Assignment 1	
	• Tone- Formality and Informality				
Technical Writing 1	 Technical writing and technical vocabulary Business letters/emails a) Types and format, Content Organization b) Cultural Variety, Tone, and Intention c) Bad news message, good news message d) Advertisements, Editorial press releases Notices, agenda, and minutes of meeting Job application, CV, and Resume' 	Interactive & Flipped classroom method	10 L	Assignment 2	CO2

		 Technical reports – types & formats Structure of a report (short & long) 	7 L		СО3
3	Technical Writing 2	 Ethical Writing – Copy Editing, Referencing and Plagiarism 		Assignment 3	
		 Technical Proposal – structure and types 			
		Technical/ Scientific paper writing			
4	Public Speaking	 Components of effective speak Seminar and conference presentation Interactive sessions, activities, mock interviews 	8 L	Assignment 4	CO4
5	Virtual/Remote Communication	 Appearing for a job interview Understanding remote work – using different online platforms 			CO5
		Virtual etiquette- email ids, usernames			

	 Developing online written correspondence- blogs, WhatsApp, LinkedIn. What not to write on social media. Participating in online Conferences/seminars/meetings Mobile Etiquette 		8 L	Assignment 5	
Total			39	Hours	

	Textbooks					
Sr No	Book Details					
1	Technical Communication – Principles and Practices by Meenakshi Raman & Sangeeta Sharma, 4th Edition, Oxford University Press, 2023, New Delhi.					
	Reference Books					
Sr No	Book Details					
1	Technical Communication: A Practical Guide by William S. Pfeiffer and Kaye A. Adkins, Pearson, 2020, UK.					
2	The Essentials of Technical Communication by Elizabeth Tebeaux and Sam Dragga, Oxford University Press, 2021, UK.					

3	Technical Communication Today by Richard Johnson-Sheehan, Pearson, 2020, UK
4	Strategic Communication in Technical Professions" by Susan K. Miller-Cochran and Jason Tham, Routledge, 2020, UK.
5	Technical Writing for Engineers & Scientists by Michelle V. Z. Holmes, McGraw Hill, 2020, US.
6	Speaking: Second Language Acquisition, from Theory to Practice by William Littlewood, Cambridge University Press, 2022, UK.
7	The Writing Revolution: A Guide to Advancing Thinking Through Writing in All Subjects and Grades by Judith C. Hochman and Natalie Wexler, Jossey-Bass, 2022, USA.

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY

GREATER NOIDA-201306

(An Autonomous Institute)

Subject I	bject Name: Data Structure and Algorithms-II L-T-P [3							Т-Р [3-0-0]
Subject (Code:	BCSE0401		Applicable i	n Department:	CSE/IT/CS/AI/A	IML/IC)T/DS/CYS
Pre-requis	site of	Subject: C, Python						
Course Ot structures	•	e : The objective of the co	urse is to learn the basic concep	ots of algorithm a	nalysis, along with	the implementation	on of no	n-linear data
Course	Outc	omes (CO)						
Course ou	itcome	: After completion of this	course students will be able to	:				Bloom's Knowledge Level(KL)
CO1	Apply	rtree structures effective	ly demonstrating proficiency in	tree operations	and algorithms.			К3
CO2	Analy	se the graph data structu	ire and implement various oper	ations for proble	m solving.			К4
CO3	Imple	ementation and analysis o	of dynamic programming for eff	icient problem-so	olving across diver	se contexts.		К4
CO4	Apply	efficient backtracking ar	nd branch &bound techniques a	cross diverse pro	blem-solving scen	arios.		КЗ
CO5	Understand advanced data structures, their implementation and application for efficient data manipulation and retrieval.						К2	
			Syll	abus				
Unit N	10	Module	Topics Covered	Pedagogy	Lecture Required	Practical/Assi gnment/Lab	COM	lapping

				L+P		
1 Design and Analysis of Algorithms: Trees	Module 1.1: Trees Module 1.2: Application of Trees	Trees: Terminology used with Trees, Binary Tree, Memory representation of Tree, Traversal Algorithms: In-order, Pre-order, and post-order. Constructing Binary Tree from given Tree Traversal, Operation of Insertion, Deletion, Searching & Modification of data in Binary Search tree, Binary Heaps, Threaded Binary trees, Traversing Threaded Binary trees, AVL Tree.Priority Queue, Heap Sort, Huffman codes.	Lectures, Code Walkthrough s, hands-on programming , Problem Solving, Collaborative Learning, competitive coding Projects, and Assessments.	8L+10P		CO1
2 Design and Analysis of Algorithms: Graphs	Module 2.1: Graphs	Terminology used with Graph, Data Structure for Graph Representations: Adjacency matrices, Adjacency List. Graph Traversal: Depth First Search and Breadth First Search. Connected Component, Spanning Trees,	Lectures, Code Walkthrough s, hands-on programming , Problem Solving, Collaborative Learning,	8L+10P	Depth First Search and Breadth First Search. Connected Component, Spanning Trees, Minimum Cost Spanning Trees:	CO2

	Module 2.2: Algorithms on Graphs	Minimum Cost Spanning Trees: Prim' s and Kruskal's algorithm. Directed- Acyclic Graph, Transitive Closure and Shortest Path algorithms: Dijkstra Algorithm, Bellman Ford Algorithm, Floyd Warshall's Algorithm.	competitive coding, Projects, and Assessments.		Prim's and Kruskal's algorithm. Directed- Acyclic Graph, Transitive Closure, and Shortest Path algorithms: Dijkstra	
3 Dynamic Programmin g	Module 3.1: Dynamic Programming	Dynamic Programming concepts 0/1 Knapsack, Longest Common Sub Sequence, Matrix Chain Multiplication, Resource Allocation Problem.	Lectures, Code Walkthrough s, hands-on programming , Problem Solving, Collaborative Learning, competitive coding, Projects, and Assessments.	8L+8P		CO3

1	Aichael T. Goodrich, Rot Viley Publication, 1st Edi	eerto Tamassia, Michael H. Goldwas tion, 2021.	ser, "Data Structu	ires and Algorithms in Pytl	non (An Indian Adaptation)",
Sr. No.		В	ook Details		
		Text	books		
	Total No. of Lectu	e + Practical Labs		(40L+48P) = 88 H	lours
5 Advanced- Data Structures	Module 5.1: Advanced-Data Structures	Red-Black Trees, B – Trees, B+ Trees, Binomial Heaps, Fibonacci Heaps, Tries.	Assessments. Lectures, Code Walkthrough s, hands-on programming , Problem Solving, Collaborative Learning, Projects, Assessments.	8L+10P	CO5
4 Backtracking , Branch and Bound	-	Backtracking, Branch, and Bound with Examples Such as Travelling Salesman Problem, Graph Colouring, n-Queen Problem, Hamiltonian Cycles, and Sum of Subsets.	Code Walkthrough s, hands-on programming , Problem Solving, Collaborative Learning, Projects,	8L+10P	CO4

2	Lipschutz, "Data Structures" Schaum's Outline Series, Tata McGraw-hill Education (India) Pvt. Ltd, 2nd Edition, 2017					
3	Thomas H. Coreman, Charles E. Leiserson and Ronald L. Rivest, "Introduction to Algorithms", Printice Hall of India, 4th Edition, 2022					
	Reference Books					
Sr. No.	Book Details					
1	Reema Thareja, "Data Structure Using C", Oxford University Press, 2 nd Edition, 2014.					
2	AK Sharma, "Data Structure Using C", Pearson Education India, 2 nd Edition,2011.					
3	P. S. Deshpandey, "C and Data structure", Wiley Dreamtech Publication, 1 st Edition, 2004.					
	Links					
Unit 1	https://www.youtube.com/watch?v=tORLeHHtazM&pp=ygUMdHJIZXMgIG5wdGVs					
Unit 2	https://www.youtube.com/watch?v=9zpSs845wf8&pp=ygUcZ3JhcGggIGRhdGEgc3RydWN0dXJIICBucHRlbA%3D%3D					
Unit 3	https://www.youtube.com/watch?v=5dRGRueKU3M&pp=ygUUZHluYW1pYyBwcm9ncmFtbWluZyA%3D					
	https://www.youtube.com/watch?v=DKCbsiDBN6c&list=PL-Y5_GYVx275I87vW3LUzEJ-g7TDgn0Ts					
Unit 4	https://www.youtube.com/watch?v=3RBNPc0_Q6g&pp=ygUuYmFja3RyYWNraW5nIGFuZCBicmFuY2ggYW5kIGJvdW5kIHByb2dyYW1 taW5nIA%3D%3D					
Unit 5	https://www.youtube.com/watch?v=8h80p rYv1Y&list=PLv9sD0fPjvSHqIOLTIvHJWjkdH0IdzmXT					

Subject N	ame: Theory of Automata & I	Formal Languages			L-	Т-Р [3-0-0]
Subject Code: BCSE0404 Applicable in Department: CSE/IT/CS/AI/AIML/IO)T/DS/CYS
-	te of Subject: 1. Mathematical Founental of Computer System	ndations				
in Compute	•	and formal Languages is a comprehensive study o hods of computation, exploring theoretical fran pilities.		-	• •	
		Course Outcomes (CO)				
Course ou	Itcome: After completion of this c	ourse students will be able to:				Bloom's Knowledge Level(KL)
CO1	Understand the concepts of Finit	e State Machines for modeling and their power	to recognize t	he language	es.	К2
CO2	Understand and identify the equ	ivalence between the Regular Expression and Fi	nite Automata	I.		K2
CO3 Define Grammar for Context Free Languages and use Pumping Lemma to disprove a Formal Language being Context- Free.			eing Context-	К3		
CO4 Implement Pushdown Automata (PDA) for Context Free Languages and Transform the PDA to Context Free Grammar and vice-versa.			e Grammar and	K3		
CO5	Implement Turing Machine for R	ecursive and Recursive Enumerable Languages.				К4
		Syllabus				
Unit No	Module Name	Topic covered	Pedagogy	Lecture Required	Practical/ Assignment/	CO Mapping

				(L+P)	Lab Nos	
1 Introduction to Finite Automata:	Module 1.1: Introduction to Finite Automata	Role of Automata and Formal languages, Alphabet, String, Grammar, Language, Chomsky Hierarchy of languages. Introduction to Finite State Machine, Deterministic Finite Automaton (DFA) and Non- Deterministic Finite Automaton (NFA), Equivalence of NFA and DFA, NFA with ∈- Transition, Equivalence of NFA's with and without ∈-Transition, Minimization of Finite Automata, Limitations and Applications of Finite Automata, Concepts of Moore and Mealy Machine's, Equivalence of Moore and Mealy Machine.	Lectures, PPTs, Notes and Smart Interactive Panel	12 L	Practice Questions Based on Finite Automata, Equivalence of Finite Automata	CO1
2 Regular Language and Finite Automata	Module 2.1: Regular Language and Finite Automata	Regular Expressions, Regular Sets, Properties of Regular Expression, Identity Rules, Finite Automata and Regular Expression, Arden's theorem, Regular Grammars-Right Linear and Left Linear grammars, Conversion of FA into Regular grammar and Regular grammar into FA, Regular and Non-Regular Languages- Closure properties and Decision properties of Regular Languages, Pumping Lemma, Application of Pumping Lemma.	Lectures, PPTs, Notes and Smart Interactive Panel	9 L	Practice Questions Based on Regular Expression and Applications of Pumping Lemma	CO2
3 Context Free Language and Grammar	Module 3.1: Context Free Language and Grammar	Normal Form (CNF), Greibach Normal Form (GNF), Pumping Lemma for CFL, Closure	Lectures, PPTs, Notes and Smart	8 L	Practice Questions Based on the Context Free Grammar and Context Free Language	CO3

Sr. No.	K.L.P. Mishra, and N. Chandrase	Book Details kharan,"Theory of Computer Science-Automata, Languages and Com	putation",	PHI , 3rd Edition	, 2006.
		Total Textbooks		45 Hours	
5 Turing Machine	Module 5.1: Turing Machine	Basic Concept of Turing Machine, Model, Representation of Turing Machines, Techniques for Turing Machine Construction, Variants of Turing Machine, Universal Turing machine, Linear Bounded Automata, Church's Thesis, Recursive and Recursively Enumerable language, Notes and Closure Properties of Recursive and Recursively Enumerable Languages, Introduction to Undecidability, Halting Problem, Post's Correspondence Problem (PCP), Modified Post Correspondence Problem (MPCP), Applications of Turing Machine.	8 L	Practice Questions Based on Construction of Turing Machine and Decidability	CO5
4 Pushdow Automata		Representation, Deterministic and Non- Deterministic Pushdown Automata, The Lectures, Language of PDA: Acceptance by Final State and Acceptance by Empty Stack, Design of Pushdown Automata, Equivalence of Context Free Grammars and Pushdown Automata, Panel Applications of Push Down Automata, Two Stack Pushdown Automata.	8 L	Practice Questions Based on Designing of PDA ,CFG to PDA and Vice Versa	CO4

	Reference Books
Sr. No.	Book Details
1	A. M. Padma Reddy, "Finite Automata and Formal Languages- A simple Approach", Cengage Learning India Private Limited, 2019.
2	A.A. Puntambekar," Formal Languages and Automata Theory", Vikas Publishing House,2 nd Edition, 2008
3	J Martin, "Introduction to languages and the theory of computation", Tata McGraw Hill ,3rd Edition, 2002.
	Links
Unit 1	https://onlinecourses.nptel.ac.in/noc24_cs71/preview_
Unit 2	https://www.youtube.com/watch?v=VOaAuHAwHT4&list=PL_obO5Qb5QTEihQ35PgzjZSh7PveVt-iF
Unit 3	https://www.youtube.com/watch?v=9kuynHcM3UA&list=PLmXKhU9FNesSdCsn6YQqu9DmXRMsYdZ2T
Unit 4	https://www.youtube.com/watch?v=eqCkkC9A0Q4&list=PLEbnTDJUr_IdM
Unit 5	https://www.youtube.com/watch?v=Xsll8h7cGDs&list=PLxCzCOWd7aiFM9Lj5G9G_76adtyb4ef7i

Subject Name: Operating Systems

L-T-P [2-0-0]

Bloom's

Knowledge

Subject Code: BCSE0403

Applicable in Department: CSE/IT/CS/AI/AIML/DS/CYS/IOT

Pre-requisite of Subject: Basic knowledge of computer fundamentals, C programming, Data structure and Computer organization.

Course Objective: The objective of this course is to provide an understanding of the basic and modern concepts of operating system and deliver the skills needed to develop and customize Linux shell programming

Course Outcomes (CO)

Course outcome: After completion of this course students will be able to:

		Level(KL)
CO1	Understand various operating systems architecture with utilizing the command line interface (CLI) within a Linux environment.	К2
CO2	Understand and implement the various CPU scheduling algorithms.	К4
CO3	Analyse deadlock, concurrency, and synchronization into the system architecture.	К4
CO4	Identify and implement the memory management techniques and algorithms.	К3
CO5	Analyse file management system and implement distributed and virtual machine configurations on modern operating systems.	К4

Syllabus

Unit No	Module Name	Topic covered	Pedagogy	Required	Practical/ Assignment/ Lab Nos	CO Mapping
1		Overview of Operating Systems, Operating system architecture, Types of Operating	, ,	41+8P	Experiment/ Program	CO1

Fundamentals & Shell scripting	Fundamentals of Operating Systems	System: Batch OS, Multiprogramming OS, Multitasking OS, Multiprocessor OS, Real time OS, System call and kernel			1.1 to 1.4	
	Module 1.2: Shell Scripting in Linux	Introduction to Linux Operating System, Basic Command Line Interface (CLI) Operations in Linux, Shell Scripting Basics: Variables, Control Structures, Functions				
2 Process Management	Module 2.1: Process Management	Process Performance Criteria, Process Transition Diagram, Process Control Block (PCB), Types of Schedulers: Long Term, Mid Term, Short Term Scheduler, CPU Scheduling- Pre-emptive and Non-Pre- emptive Algorithm (FCFS, SJF, SRTF, Non-Pre-emptive Priority, Pre-emptive Priority, Round Robin, Multilevel Queue Scheduling and Multilevel Feedback Queue Scheduling), Processes and Threads, Linux Process Management: ps, top, kill, nice	Lectures, PPTs, Notes and Smart Interactive Panel	8L+12P	Experiment/ Program 1.1 to 1.4	CO2
3 Concurrency and	Module 3.1: Concurrency	Concurrency : Race Condition, Critical Section, Inter Process Communication, Classical problem: Producer consumer,		8L+8P	Experiment/ Program 1.1 to 1.4	СОЗ

Deadlock	and Deadlock	Dinning Philosopher, Reader writer, Sleeping				
Management	Management	barber				
		Process Synchronization: Lock variable,				
		Peterson's Solution, Strict alternation,				
		Lamport Bakery Solution, Test and set lock,				
		and semaphore- counting, binary and				
		monitor,				
		Deadlock: Deadlock characterization, Prevention, Deadlock Avoidance: Bankers Algorithms, Deadlock detection, Recovery from Deadlock				
4 Memory Management	Module 4.1: Memory Management	Non-contiguous, Paging, Segmentation,	Lectures, PPTs, Notes and Smart Interactive Panel	8L+10P	Experiment/ Program 1.1 to 1.4	CO4
	Module 5.1:	File Management: Access Mechanism, File Allocation Method, Free Space Management: -Bit Vector, Linked List,				
	File					
5	Management		Lectures, PPTs,		Experiment/	
File Management & Modern Operating			Notes and Smart Interactive Panel	4L+10P	Program 1.1 to 1.4	CO5
System	Module 5.2:	Modern Operating System: -Overview of				
	Modern	modern operating system, Shared Memory				
	Operating System	concepts, Distributed system, Parallel system				

	& its architecture, Virtual machines – hypervisor, Introduction to GPUs Case Study: Large File Storage in a Distributed Manner			
	Total	(32T+48P) = 80 Hours		
	Textbooks			
Sr No	Book Details			
1	Abraham Silberschatz, Peter Baer Galvin and Greg Gagne" Operating System Concep	ots Essentials", Willey Publication,8 ^{th Edition} ,2017.		
2	Marks G. Sobell "A practical guide to Linux: Commands, Editors and Shell Programmi Platform, 4 th Edition,2017.	ing", CreateSpace Independent Publishing		
3	Jason Cannon "LINUX for beginners", 1stEdtion,2014			
	Reference Books			
Sr. No.	Book Details			
1	William Stallings "Operating Systems: Internals and Design Principles", Pearson Educ	cation , 9 th Edition, 2019.		
2	Charles Patrick Crowley, "Operating System: A Design-oriented Approach", McGraw Hill Education, 2017,			
3	Ganesh Naik "Learning Linux Shell Scripting", Packt Publishing ,2 nd Edition 2018.			
	Links			
Unit 1	CS162 Lecture 1: What is an Operating System? (youtube.com)			

	Operating System #01 Introduction to OS, its Roles & Types (youtube.com)
	Operating System #14 What is an Interrupt? Types of Interrupts - YouTube
	https://www.youtube.com/watch?v=akU1Ji8Vzdk&list=PLbMVogVj5nJRa3VKt_eyZdJ_DitCz1cvQ
	https://www.youtube.com/watch?v=rRGCGZ6OHw8&list=PLbMVogVj5nJRa3VKt_eyZdJ_DitCz1cvQ&index=2
Unit 2	Operating System #03 Programs & Processes, System Calls, OS Structure (youtube.com)
	Operating System #18 CPU Scheduling: FCFS, SJF, SRTF, Round Robin - YouTube
	Operating System #19 Priority Scheduling Algorithms, Multilevel Queues - YouTube
	Operating System #20 Multi Processor Scheduling (youtube.com)
	Operating System #33 Threads: Thread Model, Thread vs Process, pthread library (youtube.com)
	Operating System #34 Threads: User level & Kernel level thread, Threading issues (youtube.com)
	https://www.youtube.com/watch?v=3eG27YUbzyM&list=PLbMVogVj5nJRa3VKt_eyZdJ_DitCz1cvQ&index=3
Unit 3	CS162: Lecture 6: Synchronization 1: Concurrency and Mutual Exclusion (youtube.com)
	CS162: Lecture 6.5: Concurrency and Mutual Exclusion (Supplemental) (youtube.com)
	Operating System #04 CPU Sharing, Race Conditions, Synchronization, CPU Scheduling (youtube.com)
	Operating System #26 Bakery Algorithm - YouTube
	Operating System #27 Hardware Locks: Spinlock & its Usage (youtube.com)
	Operating System #31 Deadlocks: Deadlock Detection & Recovery (youtube.com)

	Operating System #32 Dealing with Deadlocks Deadlock Avoidance & Prevention (youtube.com)
Unit 4	Operating System #05 Memory Management: Process, Fragmentation, Deallocation, (youtube.com)
	Operating System #06 Virtual Memory & Demand Paging in Operating Systems (youtube.com)
	Operating System #07 MMU Mapping How Virtual Memory Works? - YouTube
Unit 5	https://www.youtube.com/watch?v=qbQCQ0U6H0o
	https://www.youtube.com/watch?v=SnKgEuUfV4k
	https://www.youtube.com/watch?v=cVFyK1f5IDw
	https://www.youtube.com/watch?v=Z0Vkrn9faoM&list=PLbMVogVj5nJRa3VKt_eyZdJ_DitCz1cvQ&index=4
	https://www.youtube.com/watch?v= BtDcroOTSA

Subject	ubject Name: Data Structure and Algorithms -II Lab					
Subject	Code: BCSE0451 Applicable in Department: CSE/IT/CS/AI/AIM	L/IOT/DS/CY				
re-req	uisite of Subject: C, Python					
	Lab Experiments					
Course	Objective: Learn to implement non-linear data structures.					
	Course Outcomes (CO)					
Course		Bloom's Knowledge Level(KL)				
CO1	Implementation of tree data structures for basic operations like insertion, deletion, searching and traversal	K3				
CO2	Implementation of algorithms based on graph data structures for solving real world problems.	К3				
	Implementing Dynamic Programming, Backtracking, Branch and Bound algorithms to solve complex data efficiently and effectively.	КЗ				
	List of Practical's					
Sr. No.	Program Title	CO Mapping				

1	Write a program to implement an in-order traversal of a binary tree and print the nodes.	CO1
2	Write a program to implement a pre-order traversal of a binary tree and print the nodes.	CO1
3	Write a program to implement a post-order traversal of a binary tree and print the nodes.	CO1
4	Write a program to count number of nodes in a binary tree	CO1
5	Write a program to find the height of the tree	CO1
6	Write a program to check if the Binary tree is balanced or not.	CO1
7	Write a Program to search a number in Binary Search Tree (BST)	CO1
8	Write a program to insert a node in a Binary Search Tree (BST).	CO1
9	Write a program to delete a node from a Binary Search Tree (BST).	CO1
10	Write a program to implement a max-heap and perform heap sort on an array of integers.	CO1
11	Write a Program to implement human coding algorithm	CO1
12	Write a program to implement priority queue using max heap.	CO1
13	Write a program to create a graph using an adjacency matrix.	CO2
14	Write a program to create a graph using an adjacency list.	CO2
15	Write a program to perform Depth-First Search (DFS) on a graph.	CO2
16	Write a program to perform Breadth-First Search (BFS) on a graph.	CO2
17	Write a program to check if there is a path between two nodes in a graph using DFS.	CO2
18	Write a program to find all the vertices reachable from a given vertex in a graph using BFS.	CO2
19	Write a program to detect a cycle in an undirected graph using DFS.	CO2
20	Write a program to detect a cycle in a directed graph using DFS.	CO2
21	Write a program to find the degree of each vertex in an undirected graph.	CO2
22	Write a program to count the number of connected components in an undirected graph.	CO2
23	Write a program to implement Dijkstra Algorithm.	CO2

24	Write a program to implement Prims Algorithm.	CO2
25	Write a program to implement Kruskal Algorithm.	CO2
26	Write a program to implement Floyd Warshall's all pair shortest path algorithm.	CO3
27	Write a program to implement Bellman ford Algorithm.	CO3
28	Write a program to implement Longest common subsequence (LCS).	CO3
29	Write a program to implement sum of subset problem using backtracking.	CO3
30	Write a program to implement insertion and search operations in a Tree.	CO3

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY GREATER NOIDA-201306 (An Autonomous Institute) School of Computer Science in Emerging Technology

Subject Name: Operating Systems Lab

L-T-P [0-0-4]

Subject Code: BCSE0453

Applicable in Department: CSE/IT/CS/AI/AIML/DS/CYS/IOT

Pre-requisite of Subject: Basic knowledge of computer fundamentals, C programming, Data structure and Computer organization.

Lab Experiment

Course Objective: 1. This course gives an ability to Hands-on and practical experience with usage of the Linux OS and basics of Shell Programming.

The OS Lab aims to provide an experience to implement and analyze algorithms related to process management, CPU scheduling, memory management, file systems, and concurrency control and simulate modern operating systems.

Course Outcomes (CO)

Course outcome: After completion of this course students will be able to:					
CO1	Execute the Linux file system using basic shell commands.	КЗ			
CO2	Implement CPU Scheduling Algorithms, Process Synchronization and deadlock handling techniques.	КЗ			
CO3	Simulate memory allocation concepts, as well as distributed and virtual machine configurations, on modern operating systems.	КЗ			
	List of Practical's	•			

Sr. No.	Program Title	СО
		Mapping
	Variables and Control Structures:	C01
1	Write a shell script to determine the Area and Perimeter of a Rectangle.	C01
2	Write a shell script to count the words, characters, and lines in the file.	C01
3	Write a shell script that calculates the sum and average of an array of numbers	CO1
4	Write a shell script to calculate the Fibonacci sequence.	C01
5	Write a shell script that finds prime numbers inside a user-specified range.	CO1
6	Write a shell script to determine whether a given string is palindrome.	CO1
	File Manipulation:	
7	Write shell script that allows users to create, delete, and list files in a directory.	C01
8	Write a shell script that Count Lines in Each File in a Directory.	C01
9	Write a shell script that find and Replace Text in Files.	C01
10	Write a shell script that find Files Modified in the Last N Days.	C01
	Directory Navigation:	
11	Write a shell script to list contents of a directory.	C01
12	Write a shell script to change directory (cd) based on user input.	C01
13	Write a shell script to navigate to the directory that contains a specific file.	C01
	Process Management:	
14	Write a shell Script to display running processes and their details.	C01
15	Write a shell Script to kill processes based on name or ID.	C01
16	Write a shell Script to automatically Restart a Process if it Crashes	C01
	User/Group Management:	

17	Write a shell Script to create, modify, and delete user accounts.	CO1		
18	Write a shell Script to add or remove users from groups.	CO1		
	Toolkit of Shell Scripts Demonstrating Shell Scripting of Functions:			
19	Write a shell script to file Backup Script with Custom Retention Policy	CO1		
20	Write a shell script for database Backup and Restore Script.	CO1		
21	Write a shell script for Network Configuration Script with Error Handling			
	Intercepting System Calls Using Dynamic Tracing Tools:	CO1		
22	Write a shell Script to intercept system calls using strace and log process ID, system call name, arguments, and return	CO1		
	values.			
23	Write a shell Script to intercept library calls using Itrace and capture similar information.	CO1		
24	Write a shell script to monitor process forks using "ps"			
	Collecting and Analyzing Network Statistics:			
25	Write a shell script to collect packet counts using tools like tcpdump or tshark.	CO1		
26	Write a shell script to measure bandwidth usage using iftop or nload.	CO1		
27	Write a shell script to analyze latency using ping or traceroute.	CO1		
28	Write a shell script to check connection status using netstat or ss.	CO1		
29	Write a shell script to visualize network data using gnuplot or matplotlib for graphs and charts.	CO1		
	Miscellaneous Commands:			
30	Print Current Date and Time: Write a shell script to Display the current date and time using date command.	CO1		
31	Generate Random Password: Write a shell script to Use openssl rand to generate a random password.	CO1		
	View System Information:	CO1		
32	Write a shell script to show system information like kernel version, CPU info, etc., using uname, lscpu, etc.	CO1		
33	Display System Uptime: Write a shell script to show system uptime using uptime command.	CO1		

34	View Disk Usage: Write a shell script to Display disk space usage of files and directories using du and df commands.	CO1
35	Check System Load: Write a shell script to monitor system load averages using w or top commands.	CO1
36	Display Calendar: Write a shell script to show the calendar for a specific month using cal.	CO1
37	Search Text in Files: Write a shell script to Use grep to search for specific text within files.	CO1
38	Count Lines in a File: Write a shell script to Use wc -I to count the number of lines in a file.	CO1
39	Check System Users: Write a shell script to Display currently logged-in users using who or w commands.	CO1
40	Implement FCFS CPU Scheduling algorithm.	CO2
41	Implement the given CPU Scheduling algorithm a) SJF b) Priority Based	CO2
42	Implement Multi-level Queue CPU Scheduling algorithm.	CO2
43	Implement PRIORITY CPU Scheduling Algorithm (For both Pre-emptive and non-pre-emptive).	CO2
44	Implement Round-Robin CPU Scheduling Algorithm	CO2
45	Implement Multilevel Queue CPU Scheduling Algorithm.	CO2
46	Execute the RACE Condition of Process Synchronization.	CO3
47	Implement the Producer-consumer problem using semaphores.	CO3
48	Design a code and implement the Dinning Philosopher problem	CO3
49	Execute an algorithm for deadlock detection.	CO3
50	Implement Banker's algorithm of Deadlock Avoidance	CO3
51	Implement Contiguous memory fixed size partition scheme.	CO4
52	Implement Contiguous memory variable size partition scheme.	CO4
53	Simulate the First-Fit contiguous memory allocation technique.	CO4
54	Simulate the Best-Fit contiguous memory allocation technique.	CO4
55	Simulate the Worst-Fit contiguous memory allocation technique.	CO4
56	Implement the Non-contiguous	CO4

57	Memory Allocation by using Paging.	CO4				
58	Write a Program to simulate the FIFO page replacement algorithm.	CO5				
59	Write a Program to simulate the LRU page replacement Algorithm.	CO1				
60	Write a Program to simulate the Optimal page replacement Algorithm.					
61	Write a program to simulate FCFS Disk Scheduling Algorithm	CO5				
62	Program to simulate the SSTF Disk Scheduling Algorithm	CO5				
63	Connects to VMware vCenter and lists all virtual machines along with their power state.	CO5				
64	Creates a new virtual machine with specified configurations in Azure.	CO5				
65	Demonstrate how to set up and deploy a simple distributed function using Azure Functions. The function should be	CO5				
	able to handle HTTP requests and run in a distributed manner across Azure's infrastructure.					
66	Write a shell script for the mount command, which is used to attach file systems to the file system hierarchy at a	CO5				
	mount point.					
67	Write a shell script for the umount command, which is used to detach a mounted file system.	CO5				
68	Write a shell script for Automate backups using cron with the tar command.	CO5				
	Variables and Control Structures:					
69	Write a shell script to determine the Area and Perimeter of a Rectangle.	CO5				
70	Write a shell script to count the words, characters, and lines in the file.	CO5				

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY GREATER NOIDA-201306 (An Autonomous Institute)

School of Computer Science in Emerging Technology

Subject Na	ame: Databa	se Management Systems				L-T-P [0-0-6]
Subject Co	ode: BCSE04	52 Applic	able in Departm	ent: CSE/IT	/CS/AI/AIML/ I	OT/DS/CYS
-	-	ct: - It is recommended to have fundamental computer	-	-	ts of computer arc	hitecture,
		owledge of data structures and algorithms and programmed e objective of the course is to introduce about databa	_		an emphasis on ho	ow to organize
maintain an	d retrieve - eff	iciently, and effectively - information in relational & non	relational database	es.		_
		Course Outcomes	(CO)			
Course ou	tcome: After	completion of this course students will be able to:				Bloom's Knowledge Level(KL)
CO 1	Understand a	nd Apply ER model for conceptual design of the databas	2.			К3
CO2	Execute SQL a	and apply the normalization to improve the database de	ign.			К3
CO3	Implement ar	nd justify the complex queries in database with different	applications.			K5
CO4	Understand a	nd execute the concept of PL/SQL, transaction and conc	urrency control.			К3
CO5 Evaluate and implement Relational and Non-Relational database on different tools for real-world applications.						
		Syllabus				
Unit No	Module Name	Topic covered	Pedagogy	Lecture Required (L+P)	Practical/ Assignment/ Lab Nos	CO Mapping

	Introduction about the DBMS	Basic Concept: - Introduction of SDLC, Data, Information, Database, DBMS, History of Database, Database system Vs File system, Data models & Types of Data Models Relational Database term: - Relation, Tuple, Attribute and Domain, Codd Rules				
Designing	Diagram	, , ,	Chalk & Duster/ Lectures, PPTs. Notes		Experiment/	
	Module 1.3: Introduction on SQL, Implement the DDL, DML, DCL & TCL	Introduction on SQL & Types of SQL commands: -DDL, DML, DCL, TCL	and Smart Interactive Panel		Program 1.1 to 1.8	CO1
	Introduction on Relational Algebra	Basic of Relation Algebra & Operations, Query Optimization				
2	Implementati on the Keys	composite offique key	Chalk & Duster/ Lectures, PPTs, Notes and Smart	7L+10P	Experiment/ Program 2.1 to 2.11	CO2

& Normalizati	Module 2.2: Implementati on of Data Constraint	Data Constraint: -Null, Not Null, Default and check Constraint	Interactive Panel			
	Implementati on of Aggregate	Use of Aggregate Function Uses of String Functions in SQL Uses of mathematical functions in SQL Uses of Advanced Functions in SQL Use of Clause: Where, Group by, Having and Order by				
		Functional Dependencies, Normalization & Types of Normalization, Candidate Key, Minimal Cover of FD's				
	Module3.1:	Operator & Predicates: - Like, Between, Aliases, distinct, limit, Implementation of Logical operator: - And, Or, Not	Chalk & Duster/ Lectures, PPTs, Notes and Smart	7L+10P	Experiment/ Program 3.1 to 3.9	CO3

	Module3.2: Set Theory Operator	Set Theory Operator: - Union, Intersect, Minus.	Interactive Panel			
	Binary Operator	Binary Operator: - Cartesian Product, Join:-Inner Join: - Natural Join, Equi Join & Non Equi Join Outer Join:- Left Outer Join, Right Outer Join and Full Outer Join, Division Operator				
		Nested Query or Sub Query: -IN, NOT IN, Exists, Not Exists, All and Any				
	Understand& Implementati on the database connectivity					
Introduction	Implementati		Chalk & Duster/ Lectures, PPTs, Notes and Smart Interactive Panel	DI +XP	Experiment/ Program 4.1 to 4.10	CO4

y control	Implementati	Introduction of PL/SQL Implementation of PL/SQL Function, Procedure, Trigger, Cursor				
	Implementati on of Transition management	Transaction system: - Life cycle of transaction, ACID Properties Schedule & Types of Schedule, Recoverability Concurrency Control Techniques: Concurrency Control, Locking Techniques for concurrency control, 2-phase Locking protocol Transaction & Data Control: -Grant, Revoke, commit & Rollback				
Introduction of NoSQL With MongoDB	Understand NoSQL Concept and implement the CURD operations Module 5.2: Implement	Comparison of relational databases to NoSQL stores, uses and deployment; - MongoDB, Cassandra, HBASE, Neo4j and Riak Introduction and Features of MongoDB, MongoDB Operators, MongoDB Collection & Document, CRUD operations, MongoDB Shell & their commands,	Chalk & Duster/ Lectures, PPTs, Notes and Smart Interactive	8L+12P	Experiment/ Program 5.1 to 5.10	CO5

1						
	Total			(3	36L+48P) = 84 Ho	ours

Textbooks
Book Details
Abraham Silberschatz, Henry F. Korth, and S. Sudarshan," Database Concepts", McGraw Hill ,7th Edition, 2020.
Elmasri, Navathe, "Fundamentals of Database Systems", Addision Wesley ,7th Edition, 2016.
Ivan Bayross, "SQL, PL/SQL – The Programming Language of Oracle", BPB Publication 5 th Edition ,2023.
Dan Sullivan, "NoSQL for Mere Mortals", Addison-Wesley Professional ,1st edition. 2015.

	Reference Books
Sr. No.	Book Details
1	Thomas Cannolly and Carolyn Begg, "Database Systems: A Practical Approach to Design, Implementation and Management", Pearson Education,3rd Edition, 2007.
2	Raghu Ramakrishan and Johannes Gehrke "Database Management Systems", McGraw-Hill, 3rdEdition, 2014.
3	NoSQL and SQL Data Modeling: Bringing Together Data, Semantics, and Software, Ted Hills, 1 st Edition,2016.
4	Brad Dayley "NoSQL with MongoDB in 24 Hours", Sams Publisher, 1st Edition, 2014.
	Links

Unit 1	DBMS L1 Inauguration & Introduction (youtube.com)
	DBMS L2 Introduction to Relational Model (youtube.com)
	DBMS L3 Introduction to SQL (youtube.com)
	DBMS L8C Entity Relationship Model (youtube.com)
	DBMS L8D Entity Relationship Model (Problem Solving and Discussion) (youtube.com)
Unit 2	DBMS L4A Joins, Set Operations and Aggregate Functions (youtube.com)
	DBMS L9A Relational Database Design - YouTube
	DBMS L9B Relational Database Design (youtube.com)
	DBMS L9C Relational Database Design (youtube.com)
	DBMS L9D Discussion on Normalization (youtube.com)
	DBMS L14A Query Optimization (youtube.com)
	Relational Data Model and Notion of Keys - YouTube
	Introduction to Relational Algebra (youtube.com)
	Operators in Relational Model - YouTube
Unit 3	DBMS L4B Joins, Set Operations and Aggregate Functions (youtube.com)

	DBMS L5A Nested Subqueris (youtube.com)
	DBMS L6A Intermediate SQL (youtube.com)
	DBMS L7 Advanced SQL (youtube.com)
	DBMS L12A Indexing and Hashing (youtube.com)
Unit 4	DBMS L15 Transactions - YouTube
	DBMS L16A Concurrency Control - YouTube
	DBMS L16B Concurrency Control (youtube.com)
	DBMS L16C Concurrency Control (youtube.com)
	DBMS L17A Recovery System - YouTube
Unit 5	DBMS L10A Application Design and Development - YouTube
	DBMS L10B Application Design and Development (youtube.com)
	DBMS L19 Distributed Data Stores and NoSQL Databases (youtube.com)
	DBMS L18B Map Reduce and Hadoop - YouTube
	NoSQL Databases #1 (Data Models, CAP Theorem, BASE Property) - YouTube
	https://youtu.be/ekuQjQUnj20?si= aL4T12EkHBZsvEK

	List of Practicals				
Lab No.	Program Logic Building				
1	Understand and implement the different ER diagram notation with their relationship and Cardinalities.				
2	Creating ER Diagram for company Database. Company database have entities like employee, departments, projects and dependents also implement the relationship and cardinalities between the entities with their relevant attribute.	CO1			
3	Design an ER diagram for a travel agency that includes entities such as travellers, bookings, destinations, and itineraries. also implement the relationship and cardinalities between the entities with their relevant attribute.	C01			
4	Converting Company & Travel Agency ER Model to Relational Model (Represent entities and relationships in tabular form, represent attributes as columns, identifying keys).	CO1			

5	Each students create at least one ER & EER diagram from real world problem and convert in tabular from with all needed constraint.	CO1
6	Implement DDL and DML commands	CO1
U		201
7	Implement DCL & TCL commands	C01
8	i. Create Database, Rename Database, Delete Database in relational database tool.	CO1
	ii. Create table employee with attributes	
	Emp_no <datatype><size></size></datatype>	
	E_name <datatype><size></size></datatype>	
	JOB <datatype><size></size></datatype>	
	Address <datatype><size></size></datatype>	
	Salary <datatype><size></size></datatype>	
	iii. Insert data into the table	
	iv. Implementation of select command	
	v. Implementation of update command	
	vi. Implementation of alter command	
	vii. Implementation of delete command	
	viii. Implementation of rename command.	
	ix. Implementation of rollback command	
	x. Implementation of commit Command	
	xi. Implementation of Truncate Command	
	xii. Implementation of Drop Command	
9	Implementation of I/O Constraint: Primary Key, composite primary key, Foreign Key with on delete set null and	CO2
	on delete set null constraint	
10	Implementation of constraint: Unique Key and Composite unique key and uses Unique key as foreign key.	CO2
11	Implementation of Business Constraint: Null, Not Null, Default, Check.	CO2
12	Implement and apply the different form of normalization approach on company /Travel Agency Database .	CO3

13	Reduction & Implementation in SQL for ER Diagram of Company Database: -	CO2
	i. Create table for EMPLOYEE, DEPARTMET, PROJECT, DEPENDENTS and WORK_ON with all needed keys	
	and other constraints.	
	ii. Populated all table with atleast Ten records in each table as per as applied constraints.	
14	Practicing Queries using Like, Between, Aliases, distinct Operator & Predicate.	CO2
15	Implementation of Aggregate Functions.	CO2
16	Implementation of Scalar, Mathematical and Advanced functions.	CO2
17	Implementation of Queries using Where, Group by, Having and Order by Clause.	CO2
18	Implementation and uses of clause and operators on Company/ Travel Agency or other database.	CO2
	i. Find the name of employee whose name start with A.	
	ii. Find the name of employee where 'hi' in any position.	
	iii. Find the name of employee whose 'r' have in second position.	
	iv. Find the details of employee whose salary is less than 70000.	
	v. Find the name of employee whose name start with V and end with I.	
	vi. Find the average salary of each department	
	vii. Find the max salary of each department	
	viii. Find the sum of salary of department that have more than three employees in ascending order.	
	ix. Find the empid of Employee who work in more than 3 project.	
	x. Find the empid who have more than one dependent.	
	xi. K. Implement the concept of rollback and commit on Employee Table	
19	Create a table EMPLOYEE with following schema:-(Emp_no, E_name, E_address, E_ph_no, Dept_no,	
	Dept_name,Job_id, Designation, Salary)	
	Write SQL statements for the following query.	
	i. List the E_no, E name, Salary of all employees working for MANAGER.	
	ii. Display all the details of the employee whose salary is more than the Sal of any IT PROFF.	
	iii. List the employees in the ascending order of Designations of those joined after 1981.	
	iv. List the employees along with their Experience and Daily Salary.	
	v. List the employees who are either 'CLERK' or 'ANALYST' .	

	vi. List the employees who joined on 1-MAY-81, 3-DEC-81, 17-DEC-81,19-JAN-80.	
	vii. List the employees who are working for the Deptno 10 or 20.	
	viii. List the E-names those are starting with 'S' .	
	ix. Display the name as well as the first five characters of name(s) starting with 'H'	
	x. List all the emps except 'PRESIDENT' & 'MGR" in asc order of Salaries.	
	xi. Display total salary spent for each job category.	
	xii. Display lowest paid employee details under each manager.	
	xiii. Display number of employees working in each department and their department name.	
	xiv. Display the details of employees sorting the salary in increasing order.	
	xv. Show the record of employee earning salary greater than 16000 in each department.	
	xvi. Add constraints to check, while entering the empno value (i.e) empno > 100.	
	xvii. Define the field DEPTNO as unique.	
	xviii. Create a primary key constraint for the column (EMPNO).	
20	Implementation of Queries using set theory operators UNION, INTERSECT, MINUS.	CO3
21	Implementation of Queries using Inner Join:- Natural Join , Equi Join & Non Equi Join	CO3
22	Implementation of Queries using Outer Join :- Left Outer Join, Right Outer Join and Full Outer Join	CO3
23	Implementation of Queries nested Queries or Sub Queries: - IN, NOT IN, Exists, Not Exists, All and Any.	CO3
24	Apply the set theory operators, join's and nested queries on company database (Case Study-1)	
	Write the SQL Queries for the following statement	
	 i. Retrieve the names of employees in department 5 who work more than 10 hours per week on the 'ProductX'project. ii. List the names of employees who have a dependent with the same first name as themselves. 	CO3
	iii. Find the names of employees that are directly supervised by 'Franklin Wong'.	
	iv. For each project, list the project name and the total hours per week (by all employees) spent on that project.	
	v. Retrieve the names of all employees who work on every project controlled by department 5.	
	vi. Retrieve the names of all employees who do not work on any project. (f') Retrieve the names of all employees who do not work on every project	

vii. viii. ix. x. xi. xii. xii. xii. xiv. xv. xv.	For each department, retrieve the department name, and the average salary of employees working in that department. Retrieve the average salary of all female employees. Find the names and addresses of all employees who work on at least one project located in Houston but whose department has no location in Houston. List the last names of department managers who have no dependents. Retrieve the names of all employees who work in the department that has the employee with the highest salary among all employees. Retrieve the names of all employees whose supervisor's supervisor has '888665555' for Ssn. For each department that has more than 5 employees retrieve the dno and no. of its employees who are making more than 6,00,000 Find the sum of salaries of all employees of 'ACCOUNTS' department as well as the MAX(SAL), MIN(SAL),AVG(SAL) in this department Show the resulting salary for employee working on IOT project is given a 10% raise	
create deduc empri conta refere	irement: A college consists of number of employees working in different departments. In this context, e two tables' employee and department. Employee consists of columns empno, empname, basic, hra, da, ctions, gross, net, date-of-birth. The calculation of hra, da are as per the rules of the college. Initially only too, empname, basic have valid values. Other values are to be computed and updated later. Department tinsdeptno, deptname, and description columns. Deptno is the primary key in department table and ential integrity constraint exists between employee and department tables. Perform the following ations on the database: Create tables department and employee with required constraints. Initially only the few columns (essential) are to be added. Add the remaining columns separately by using appropriate SQL command 3. Basic column should not be null. The default value for date-of-birth is 1 Jan, 1990. When the employees called daily-wagers are to be added the constraint that salary should be greater than or equal to 5000 should be dropped. Display the information of the employees and departments with description of the fields. Display the average salary of all the departments. Display the average salary department wise. 9. Display the maximum salary of each department and also all departments put together. Commit the changes whenever required and rollback if necessary.	CO3

ix.	Find the employees whose salary is between 5000 and 10000 but not exactly 7500.	
x.	Find the employees whose name contains 'en'.	
xi.	12.Create alias for columns and use them in queries.	
xii.	13. List the employees according to ascending order of salary.	
xiii.	14. List the employees according to ascending order of salary in each department.	
xiv.	Find the employees who are born on Feb 29.	
xv.	Find the departments where the salary of at-least one employee is more than 20000.	
xvi.	Find the departments where the salary of all the employees is less than 20000.	
xvii.	Add the column dept_location in department table.	
Und	lerstand & implement the Database Connectivity with Java/Python etc. programming language	CO3
26 Imp	lementation and apply all the set theory operators, join and nested queries concept on Case study –1.	
i. ii.	as a worker or as a manager of the department that controls the project.	
iii.		
iv.		CO3
v.		03
vi.		
	happen to manage a department; if they do not manage one, we can indicate it with a NULL value.	
vii.		
viii.		
ix.		
x.		
xi.		
	sex as the employee.	
27 Crea	ate Desktop/Web application using the database connectivity.	CO3
28 Imp	lementation of Array Function	CO4

29	Implementation of Array Operators	CO4
30	Implementation of Indexing, Views and sequence	CO4
31	 i. Write a PL/SQL Program t3o Add Two Numbers ii. Write PL/SQL Program for Fibonacci Series 	CO4
	iii. Write PL/SQL Program to Find Greatest of Three Numbers	
32	Write a PI/SQL code block to calculate the area of a circle for a value of radius varying from 3 to 7. Store the radius and the corresponding values of calculated area in an empty table named Areas, consisting of two columns Radius and Area.	CO4
33	Write a PL/SQL code block that will accept an account number from the user, check if the users balance is less than the minimum balance, only then deduct Rs.100/- from the balance.	CO4
34	Create a row level trigger for the customers table that would fire for INSERT or UPDATE or DELETE operations performed on the CUSTOMERS table. This trigger will display the salary difference between the old values and new values:	CO4
35	Implementation of commit and rollback statement with amount transfer example.	CO4
36	Implementation array, indexing, transaction concept on Case study 1.	
	i. Implementation of Array Functions & Operators	
	ii. Implementation of Sequence	
	-Creating Sequences	224
	-Modifying a Sequence Definition	CO4
	-Removing Sequences	
	iii. Implementation of Views	
	-Creating Simple and Complex Views	

	-Modifying Views	
	-Removing Views	
	iv. Implementation of Indexes	
	-Manual and Automatic Indexes	
	-Creating Indexes	
	- Removing Indexes	
37	i. Write a PL/SQL block to calculate the incentive of an employee whose ID is 110.	
	ii. Grant and revoke DCL command used on Employee table	
	-GRANT SELECT ON Employee TO emp_name;	
	-Granting multiple privileges on Employee table	
	-Granting all privileges on Employee table;	
	-Granting privilege to a role in Employee table	
	-Granting the WITH GRANT OPTION on Employee table.	COL
	-Revoke all the permission applied on Employee table.	CO5
	iii. Create the CUSTOMERS table having the following attributes:	
	- (ID, NAME, AGE, ADDRESS, SALARY)	
	- Insert ten records in customer table.	
	-In Customer table delete those records which have age = 25 and then COMMIT the changes in the database.	
	-In Customer table delete those records which have age = 30 and then Rollback the changes in the database.	
	- Create three savepoint for customer table in that the three deletions have taken place.	

	- Apply the savepoint 2 with rollback on customer table and display the table record.	
	- Apply the SET Transaction command.	
38	Study of Open Source NOSQL Database and installation of MongoDB	CO5
39	Create, drop, rename the database in MongoDB	CO5
40	Implementation the MongoDB Operators.	CO5
41	Implementation the CRUD Operation in MongoDB	CO5
42	Implementation of the MongoDB Shell commands	CO5
43	Implementation of MongoDB Cursor and their methods	CO5
44	Implementation of relation in MongoDB	CO5
45	Implementation of Aggregate in MongoDB	CO5
46	Deployment the data on different tools like HBASE, Riak and Cassandra	CO5
47	Implementation of all CRUD operation, Cursor and aggregate etc. on real world problem.	CO5
	Connect to MongoDB (by using mongo shell)	
	i. Create database with name (ems) - use ems;	
	ii. Create collection with following fields:	
	{"name", age", gender","exp, subjects, "type"" qualification"},	
	iii. Insert the Ten documents into "faculty" collection (Use insertMany())	
	Write the following queries:	
	 i. Get the details of all the faculty. ii. Get the count of all faculty members. iii. Get all the faculty members whose qualification is "Ph.D". 	

	 iv. Get all the faculty members whose experience is between 8 to 12 years. v. Get all the faculty members who teach "MATHS" or "NETWORKING". vi. Get all the faculty members who teach "MATHS" and whose age is more than 30 years and qualification must be "Ph.D". vii. Get all the faculty members who are working part-time or who teach "JAVA". viii. Add the following new faculty members: {"name":"Ankita ", "age":34,"gender":"F","exp":25, subjects: ["MATHS","DE"],"type":"Full Time", "qualification":"Ph.D"} ix. Update the data of all faculty members by incrementing their age and exp by one year. x. Update the faculty "Sivani" with the following data: update qualification to "Ph.D" and type to "Full 	
	 Time". xi. Update all faculty members who are teaching "DBMS" such that they should now also teach "Java Programming". xii. Delete all faculty members whose age is more than 55 years. xiii. Get only the name and qualification of all faculty members. xiv. Get the name, qualification and exp of all faculty members and display the same in ascending order of exp. xv. Sort the faculty details by their age (descending order) and get the details of the first five faculty members only. 	
48	Implementation of case Study on different domain1. E-commerce Platform2. Inventory Management3. Railway System4. Hospital Data Management5. Voice-based Transport Enquiry System6. SMS-based Remote Server Monitor system7. Banking System8. Al based	CO1, CO2, CO3, CO4, CO5

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY GREATER NOIDA-201306

(An Autonomous Institute)

School of Computer Science in Emerging Technology

Subject Name: Technical Communication Lab

L-T-P [0-0-2]

Subject Code: BASL0451

Prerequisite of Subject: B2 (CEFR level) in the Core Skills test; B1/B2 in the Speaking and Writing tests

Lab Experiments

Course Objective: To develop communication and critical thinking skills necessary for succeeding in the diverse and ever-changing workplace of the twenty first century and help the students communicate effectively, creatively, accurately, and appropriately.

			Course Outcomes (CO)			
Course	outco	ome: After completion of this course	students will be able to:		Bloom's Knowledge Level(KL)	
CO1	Comprehend the principles and functions of technical communication.					
CO2	Write for a specific audience and purpose to fulfil the provided brief.					
CO3	Ident	ify and produce different kinds of technical	documents.		K2, K3	
CO4	Apply	y effective speaking skills to efficiently carry	out official discourses.		КЗ	
CO5	5 Demonstrate understanding of communication through digital media.					
			List of Practical's			
Lab No).	Торіс	Program Logic Building	CO Mapping		
1		Case Study Analysis	The students will be able to develop their critical thinking and analytical skills.	CO1		
2		Email Role Reversal: Writing and responding to emails in peer groups	The students will practice writing and responding to professional emails.	CO2		

3	Infographics – Data Analysis and Interpretation Task	The students will develop their ability to decipher important information from charts, graphs, tables, and diagrams.	CO3
4	Document Redesign Challenge: Redesigning existing technical documents to improve readability	The students will develop their ability to write and edit professional documents.	CO3
5	Abstract Formulation and Referencing	The students will be able to write research papers with proper source citations.	CO3
6	Case Study presentations	The students will improve their analytical skills and by presenting improve their speaking skills.	CO4
7	Presentation on Project Report	The students will develop professional speaking skills.	CO4
8	Ted talk simulation – summarising a Ted Talk	The students improve their ability to condense speeches.	CO4
9 & 10	Mock Interviews	The students will practice and enhance their interview skills.	CO4
11 & 12	Webinar Presentations/Online Interviews	The students will improve their ability to make presentations in professional scenarios and perform well in online interviews.	CO5

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY

GREATER NOIDA-201306

(An Autonomous Institute)

School of Computer Science in Emerging Technology

Subject Name: Environmental Science

L-T-P [2-0-0]

Subject Code: BNC0402

Applicable in Department: All Branches

Pre-requisite of Subject: Environmental science is an interdisciplinary field that requires a solid foundation in various subjects to fully understand the complex interactions within the environment.

Building a strong foundation in subjects like physics, chemistry, biology, maths, geography, economics will equip students with the knowledge and skills necessary to tackle complex environmental challenges and contribute to sustainable solutions.

Course Objective: To help the students in realizing the inter-relationship between man and environment and help the students in acquiring basic knowledge about environment.

Course Outcomes (CO)

		•				
Cours	e outcome: After complet	ion of this course students will be able to:				Bloom's Knowledge Level(KL)
CO 1	-	Understand the basic principles of ecology and environment. Ecosystem: Basic concepts, components of ecosystem, food chains and food webs. Ecological pyramids				
CO2	Understand the different ty	pes of natural recourses like food, forest, Minerals	and energy a	nd their conser	vation	K1,K2
CO3	Understand the importance	e of biodiversity, Threats of biodiversity and differe	nt methods of	biodiversity co	onservation.	K1,K2
CO4	Understand the different ty	pes of pollution, pollutants, their sources, effects a	and their conti	ol methods.		K1,K2
CO5	Understand the basic concepts of sustainable development, Environmental Impact Assessment (EIA) and different acts related to environment					K1,K2
		Syllabus				
Unit No	Module Name	Topic covered	Pedagogy	Lecture Required (L+P)	Practical/ Assignment/ Lab Nos	CO Mapping
1	Basic Principle of Ecology	Definition, Scope and basic principles of ecology and environment. Ecosystem: Basic concepts components of ecosystem. Food chains and food webs. Ecological pyramids, Energy flow in ecological systems, Characteristics of different ecosystems. Biogeochemical Cycles: Importance gaseous and sedimentary cycles. Carbon Nitrogen, Phosphorus and Sulphur Cycles. Basic	, Smart board PPTS, Reference ,Books,	, 4 L	NA	CO1

		concepts of sustainable development, SDGs, Ecosystem services, UN Decade for Eco restoration				
2	Natural Resources and Associated Problems		Smart board, PPTS, Reference Books,	4 L	NA	CO2
3	Biodiversity Succession and Non-Renewable Energy Resources	Biodiversity and their importance, Threats to biodiversity, major causes, extinction's, vulnerability of species to extinction, IUCN threat categories, Red data book. Strategies for	Smart board, PPTS, Reference Books	4 L	NA	CO3

- NA		Books	All (Prevention and control of pollution) Act, 1981. Forest (Conservation) Act, 1981. Forest (Conservation) Act, 1981. Forest (Conservation) Act, 1981. Vetlands (Conservation and Management) Rules, 2017; e. Chemical safety and Disaster Management law.F. District Environmental Action Plan. Climate action plans. Total Textbooks		
		Books	1981. Forest (Conservation) Act, 1980.d. Wetlands (Conservation and Management) Rules, 2017; e. Chemical safety and Disaster Management law.F. District Environmental Action Plan. Climate action plans.		
- NA		Books	1981. Forest (Conservation) Act, 1980.d. Wetlands (Conservation and Management) Rules, 2017; e. Chemical safety and Disaster Management law.F. District Environmental Action		
	4 L	Smart board, PPTS,	Role of community, women and NGOs in environmental protection, Bio indicators and their role, Natural hazards, Chemical accidents and disasters risk management, Environmental Impact Assessment (EIA), Salient features of following Acts: a. Environmental Protection Act, 1986, Wildlife (Protection) Act, 1972.b. Water (Prevention and control of pollution) Act, 1974.c. Air (Prevention and control of pollution) Act,	Role of Community and Environmental Protection Acts	
. NA	4 L	Smart board, PPTS, Reference Books	stability. Air pollution: sources of air pollution, Primary and secondary air pollutants. Origin and effects of SOX, NOX, Cox,CFC, Hydrocarbon, control of air pollution. Water pollution: sources and types of water pollution, Effects of water pollution, Eutrophication, Soil pollution: Causes of soil pollution, Effects of soil pollution, Major sources of and effects of noise pollution on health, Radioactive and thermal pollution sources and their effects on surrounding environment. Solid waste disposal and its effects on surrounding environment, Climate change, global warming, acid rain, ozone layer depletion.	Pollution and Solid Waste Management	4

	Botkin, D.B and Kodler E.A., 2000, Environmental Studies : The earth as a living planet. John Wiley and Sons Inc.
2	Environmental studies and Environmental engineering –By Dr. H.H
3	Environmental Studies By Dr B.S.Chauhan
	Reference Books
Sr No	Book Details
1	Rao M.N. and H.V.N. Rao, 1989 : Air Pollution, Tata McGraw Hill Publishing Co. Ltd., New Delhi
2	A Text Book of environmental Science By Shashi Chawla
3	Environmental studies- R, Rajagopalan -Oxford Pubtiotion20051
	Links
Unit 1	Ecosystems and Biomes Classroom Learning Video - YouTube
Unit 2	Environmental Science EVS Unit 3 Natural Resources Land Resources AEC semester 1/2 DU SOL NCWEB P -1 (youtube.com)
Unit 3	Biodiversity & its Conservation' In Just 24 Minutes 🗆 🛛 Ultimate Revision Series Neet 2022 (youtube.com)
Unit 4	Air Pollution What Causes Air Pollution? The Dr Binocs Show Kids Learning Videos Peekaboo Kidz (youtube.com)
Unit 5	Environmental Pollution - Environment and Ecology for UPSC IAS Part 2 (youtube.com)